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LETTER FROM THE EDITOR

Again we celebrate the arrival of Spring with a few pages of color. In our first article,
Tom Apostol and Mamikon Mnatsakanian use colorful figures to illustrate a construc-
tion of a hyperbola using pencil, string, and a common drinking straw. The construc-
tion follows the well known pencil-and-string construction for an ellipse, and uses the
straw to turn an addition operation into a subtraction operation. The authors show how
this construction helps to unify the treatment of families of conic sections.

Next is Shailesh Shirali’s appreciation of the Indian mathematician Bhāskarā I, who
gave a rational approximation to the sine function during India’s golden age. We have
better techniques now, but it’s not clear that we could find a better result.

The third article is Mark Kayll’s exploration of the interplay between discrete and
continuous mathematics. He starts with a simple integral and finishes with a value of
the Gamma function, but along the way he finds matchings in graphs, derangements,
and rook polynomials.

In the Notes, two teams of authors begin from a common point in group theory
(“Pr(G)”) and develop it in very different directions. Andrew Bremner finds some
large integers lurking in elliptic curves. Rafael Jakimczuk presents a new approach
to deciding when 2 is congruent to a square mod p, and Matt Duchnowski reveals a
new counting formula for crossword puzzles. Authors Brown, Knight, and Wolfe bring
us a checkerboard counting problem, and solve it using—among other tools—linear
algebra over a finite field.

Are you looking for the usual April feature on the USAMO? It was in the October,
2010 issue.

Finally—I can show a color graphic on this page, and so I must! The picture below
is a Klein bottle, drawn in five dimensions and then projected into two. Two of the
original dimensions influence the colors. Alas, the “square” tiles are not really square,
or even flat. Is it possible to construct a Klein bottle in R5 using only square tiles?

Walter Stromquist, Editor
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ARTICLES

Ellipse to Hyperbola:
“With This String I Thee Wed”

TOM M. APOS TOL
Project MATHEMATICS!

California Institute of Technology
Pasadena, CA 91125
apostol@caltech.edu

MAMIKON A. MNATSAKANIAN
Project MATHEMATICS!

California Institute of Technology
Pasadena, CA 91125

mamikon@caltech.edu

String construction for both ellipse and hyperbola The title was inspired by our
modification of the well-known string construction for the ellipse. In FIGURE 1a a
piece of string joins two fixed points (the foci of the ellipse), and the string is kept taut
by a moving pencil that traces the ellipse. The bifocal property of the ellipse states that
the sum of distances from pencil to foci is the constant length of the string.

pencil

tube of length R 

F2 F1

P

(a) (b)

Figure 1 (a) String construction for the ellipse. (b) New mechanism for tracing a hyper-
bola. The pencil pushes inward along the outer edge of the tube.

The same string fastened to the same points can also be used to trace a hyperbolic
arc with the same foci. How is this possible? The bifocal property of the hyperbola
states that the difference of distances (longer minus shorter) from any point on the
hyperbola to the foci is constant. Nevertheless, a slight modification of the string con-
struction for the ellipse shows how to do it.

The points of intersection of an ellipse with the line through its foci are called its
vertices. Take a thin rigid tube shorter than the string but longer than the distance from
a focus to the nearest vertex. Pass part of the string through the tube and fasten the ends

Math. Mag. 84 (2011) 83–97. doi:10.4169/math.mag.84.2.083. c©Mathematical Association of America
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of the string to the foci as before. One end of the tube pivots at a focus, like one hand
of a clock. The free end traces a circle that plays a crucial role in this paper. A pencil
keeps the string taut by pushing it inward along the outer edge of the tube, as indicated
in FIGURE 1b. If it pushes outward in the radial direction, the tube plays no role and the
pencil traces part of the ellipse as in FIGURE 1a. But if it pushes inward as in FIGURE

1b, it traces a portion of a hyperbola lying inside the ellipse with the same foci, as in
FIGURE 2a. This is easily verified by noting that the constant length c of the string is
the sum of three distances in FIGURE 1b, the tube length R, plus R − PF1 (the portion
along the outside edge), plus focal distance PF2. Therefore PF2 − PF1 = c − 2R, a
constant.

(a) (b)

Figure 2 (a) The hyperbolic arc is inside the ellipse with the same foci. (b) If the length
of the tube is varied, the pencil traces arcs of all confocal hyperbolas.

By varying the length of the tube you can draw an entire family of confocal hyper-
bolic arcs (FIGURE 2b). Because these arcs are confocal with the ellipse, they intersect
it orthogonally. One of the arcs so constructed is the perpendicular bisector of the seg-
ment joining the foci.

Contents of this paper The string mechanism that weds the ellipse and hyperbola
leads in a natural way to a generalization of the classical bifocal property, in which
each focus is replaced by a circle, called a focal circle, centered at that focus. Focal
circles extend the string construction by using two tubes, each pivoted at a focus; each
free end traces a focal circle. Theorem 1 reveals that each of the sum and difference of
distances to the focal circles can be constant on both the ellipse and hyperbola. Special
pairs of focal circles, called circular directrices, are then introduced. Those familiar
with paper-folding activities for constructing an ellipse or hyperbola using a circle as a
guide, will be pleased to learn that the guiding circle is, in fact, a circular directrix. This
is followed by an extended bifocal property for the ellipse and hyperbola, a converse
to Theorem 1.

Although a parabola has only one focus, the extended bifocal properties of the el-
lipse and hyperbola can be transferred to a parabola by moving one focus to∞. In the
limit, a circular directrix centered at the moving focus becomes the classical directrix
of the parabola. An application is also given to a pursuit problem involving conics.

Focal circles for ellipse and hyperbola

FIGURE 3 shows a string mechanism generalizing that in FIGURE 1b for tracing both
elliptic and hyperbolic arcs with the same foci. This involves two tubes, each pivoting
around a focus. The free end of each tube traces a circle that we call a focal circle. The
focal circles may or may not intersect, and one of them might lie inside the other. The
example in FIGURE 3 shows them intersecting. Join the foci with a string of constant
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length which passes through the two tubes. A new feature, not needed in FIGURE

1b, is the introduction of a ring to insure that the pencil keeps the string taut at the
intersection of the radial directions. The four diagrams in FIGURE 3 show how the
mechanism works in different parts of the plane determined by the intersecting focal
circles.

Figure 3 String mechanism involving two tubes. A wedding ring keeps the string taut at
the intersection of the radial directions.

What is the locus traced by continuous motion of this string mechanism?

(a) (b)

Figure 4 (a) A curvilinear trapezoid and its mirror image, each traced by one continuous
motion of the two-tube string mechanism. (b) A family of trapezoids obtained by varying
the length of the portion of the string outside the tubes.

The result, which may seem surprising, is a curvilinear ‘trapezoid’ bounded by
elliptic and hyperbolic arcs, as shown in FIGURE 4a. FIGURE 4b shows a family of
curvilinear trapezoids obtained by varying the length of the portion of the string outside
the tubes.

To analyze the situation more precisely, refer to FIGURE 5 which shows two distinct
points F1 and F2 that will serve as foci for an ellipse or a hyperbola. Draw two coplanar
circles C1 and C2, which are the focal circles, centered at the foci with respective radii
R1 ≥ 0 and R2 ≥ 0.
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Figure 5 Two focal circles that divide the plane into four regions.

The example in FIGURE 5 shows two intersecting focal circles that divide the plane
into four regions: region 1 inside C1 and outside C2, region 2 inside C2 and outside C1,
region 3 outside both C1 and C2, and region 4 inside both C1 and C2. In some cases,
one of regions 1, 2 or 4 may be empty.

FIGURE 4a shows a curvilinear trapezoid and its mirror image, each of which can
be traced by the string mechanism in one continuous motion through all four regions
in FIGURE 5. The upper trapezoid has two lower vertices on the boundary of region
4, and two upper vertices on the boundary of region 3. Place the pencil at the lower
right vertex on circle C1, moving it through region 4 to the lower left vertex on circle
C2. As we show later, this traces an arc of an ellipse (the lower edge of the trapezoid).
Now continue the motion in region 1 to trace a hyperbolic arc (the left edge of the
trapezoid), and then in region 3 to trace another elliptical arc (the upper edge of the
trapezoid). Finally, return to the starting point by tracing another hyperbolic arc in
region 2 (the right edge of the trapezoid). Theorem 1a will show that the length d of
the portion of the string outside the tubes is the same constant on each edge of the
trapezoid. By changing the value of d we obtain an entire family of trapezoids, as
depicted in FIGURE 4b. As d shrinks to 0 the trapezoid becomes a point of intersection
of the focal circles.

Two locus properties relating the ellipse and hyperbola

This section introduces two new and surprising locus properties relating the ellipse and
hyperbola. Refer to the focal circles in FIGURE 5. Choose any point P in the plane of
the circles, and let f1 be the distance from P to focus F1, and f2 the distance from P
to focus F2. Also, let d1, d2 be the respective shortest distances from P to focal circles
C1 and C2, each measured radially, so that d = d1 + d2 is the length of the portion of
the string outside the tubes in the string mechanism. FIGURE 5 shows two choices of
P , one in region 2, the other in region 4. We note that the following relations hold in
FIGURE 5:

In region 1, d1 = R1 − f1 and d2 = f2 − R2. (1)

In region 2, d1 = f1 − R1 and d2 = R2 − f2. (2)

In region 3, d1 = f1 − R1 and d2 = f2 − R2. (3)

In region 4, d1 = R1 − f1 and d2 = R2 − f2. (4)
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By adding d1 and d2 in each region we obtain:

LEMMA 1.

(1) If P is in region 1, then d1 + d2 = ( f2 − f1)− (R2 − R1).

(2) If P is in region 2, then d1 + d2 = ( f1 − f2)− (R1 − R2).

(3) If P is in region 3, then d1 + d2 = ( f1 + f2)− (R1 + R2).

(4) If P is in region 4, then d1 + d2 = (R1 + R2)− ( f1 + f2).

When d1 + d2 is constant, Lemma 1 reveals the following information about the
curves traced by the string mechanism:

In region 1, f2 − f1 is constant and P traces part of a hyperbola with foci F1 and F2.
In FIGURE 4a, this part is shown as two solid arcs on the left branch of this hyperbola.

In region 2, f1 − f2 is a different constant and P traces part of a different hyperbola
with the same foci. In FIGURE 4a, this part is shown as two solid arcs on the right
branch of the second hyperbola.

In region 3, f1 + f2 = R1 + R2 + d1 + d2 = c, the length of the string, and P traces
part of an ellipse, shown in FIGURE 4a as two solid elliptical arcs.

In region 4, the constant focal sum f1 + f2 differs from that in region 3, and P
traces two solid arcs of the smaller ellipse shown in FIGURE 4a.

By subtracting distances d1 and d2 in each region, we obtain:

LEMMA 2.

(1) If P is in region 1, then d2 − d1 = ( f1 + f2)− (R1 + R2).

(2) If P is in region 2, then d1 − d2 = ( f1 + f2)− (R1 + R2).

(3) If P is in region 3, then d1 − d2 = ( f1 − f2)− (R1 − R2).

(4) If P is in region 4, then d2 − d1 = ( f1 − f2)− (R1 − R2).

When |d1 − d2| is constant, Lemma 2 reveals the following information about the
curves traced by the string mechanism:

In regions 1 and 2, the focal sum f1 + f2 = R1 + R2 + |d1 − d2| is constant, so P
traces an elliptical arc. Each of these arcs, shown dashed in FIGURE 4a, is a contin-
uation of a corresponding solid elliptical arc in FIGURE 4a, because their focal sums
agree at those points where the arcs intersect the focal circles.

A similar analysis shows that each dashed hyperbolic arc in regions 3 and 4 of
FIGURE 4a is a continuation of a corresponding solid hyperbolic arc in regions 1 and 2.

Thus, from Lemmas 1 and 2 we deduce:

THEOREM 1.

(a) The locus of points P such that d1 + d2 is constant is part of an ellipse or a hyper-
bola.

(b) The locus of points P such that |d1 − d2| is constant is part of an ellipse or a
hyperbola.

Proof. Part (a) follows from Lemma 1, and part (b) from Lemma 2.

Theorem 1 uncovers the surprising fact that use of focal circles allows each of
d1 + d2 and |d1 − d2| to be constant on both the ellipse and hyperbola.

Circular directrices for the ellipse and hyperbola Unlike central conics (ellipse
and hyperbola), which have two foci, a parabola has only one focus F . It can be de-
scribed as the locus of a point P that moves in a plane with its focal distance PF always
equal to its distance PD from a fixed line D, called its directrix. Now we introduce an
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analogous equidistant property for central conics, using two special focal circles with
the property that from each point of the central conic, the shortest distances to the
two focal circles are equal. If such focal circles exist, we call them circular directri-
ces. Now we will show that Lemma 2 implies that they do exist and tells us how to
determine them.

A point P is equidistant (equal shortest distances) from the two focal circles if, and
only if, d1 = d2. According to Lemma 2, this happens in regions 1 and 2 of FIGURE

5 when R1 + R2 = f1 + f2, and the same occurs in regions 3 and 4 when R1 − R2 =

f1 − f2.
On an ellipse, the constant sum f1 + f2 represents the length of the major axis of

the ellipse, while on a hyperbola the constant difference | f1 − f2| represents the length
of the transverse axis. This gives us the following:

DESCRIPTION OF CIRCULAR DIRECTRICES. Any two focal circles with sum of
radii R1 + R2 = f1 + f2 serve as a pair of circular directrices for the ellipse; any two
focal circles with |R1 − R2| = | f1 − f2| serve as a pair of circular directrices for the
hyperbola.

Each central conic has infinitely many pairs of circular directrices. FIGURE 6 shows
three pairs of circular directrices for a given ellipse. In (a), R1 = 0, C1 becomes focus
F1, and R2 = f1 + f2, so the entire ellipse lies inside focal circle C2, hence in region
2. Each point on the ellipse is equidistant from focus F1 and from this particular focal
circle C2, as depicted in FIGURE 6a. This circular directrix C2 is used in standard
paper-folding constructions for the ellipse. It was also used by Feynman [2, p. 152] in
his geometric treatment of Kepler’s laws of planetary motion.

(a) (b) (c)

Figure 6 An ellipse and three pairs of its circular directrices. In (a), R1 = 0 and R2 =

f1 + f2. In (b) and (c), R1 > 0 and R2 = f1 + f2 − R1. For each P on the ellipse, the shortest
distances d1 and d2 to the focal circles are equal.

In FIGURES 6b and 6c, both circular directrices have positive radii, but the sum of
the radii is constant, so an increase in R1 results in a corresponding decrease in R2. In
FIGURE 6b, the entire ellipse is in region 2, but in FIGURE 6c part of the ellipse is in
region 2 and the remaining part in region 1.

FIGURE 7 shows three pairs of circular directrices for one given branch of a hy-
perbola. In FIGURE 7a, R1 = 0 and R2 = f2 − f1. This circular directrix is used in
standard paper-folding constructions for the hyperbola. In FIGURES 7b and 7c, R1 > 0
and R2 = f2 − f1 + R1, so an increase in R1 results in a corresponding increase in R2.

One may very well ask “What about the other branch of the hyperbola?”
FIGURE 8 shows both branches and reveals something new. From any point P there

are two distances to each focal circle, the shortest distances, which we have denoted
by d1 and d2, and the longest distances, which we denote by D1 and D2. The difference
Di − di is 2Ri , the diameter of focal circle Ci . The longest distance D2 plays a role
on the second branch. FIGURE 8a shows both branches of the hyperbola in FIGURE
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(a) (b) (c)

Figure 7 One branch of a hyperbola and three pairs of its circular directrices. In (a), R1 =

0, R2 = f2 − f1. In (b) and (c), R1 > 0, R2 = f2 − f1 + R1. For each P on the hyperbola, the
shortest distances d1 and d2 to the focal circles are equal.

7a, labeled as H1. Here we have d1 = D2 on the second branch. In other words, the
shortest distance to C1 is equal to the longest distance to C2. In this case, C1 = F1

because R1 = 0.

(a) (b)
H1 H1 H1 H1H2 H2

Figure 8 (a) Both branches of hyperbola in FIGURE 7a. For each P on the right branch
the shortest distance d1 is equal to the longest distance D2. (b) Two confocal hyperbolas
H1 and H2 with transverse axes of different lengths.

But when R1 > 0 and R2 = f2 − f1 + R1, a new phenomenon occurs. A second
hyperbola comes into play with the same foci but with a different transverse axis, as
shown in FIGURE 8b. Let H1 denote the hyperbola with the shorter transverse axis,
and H2 the one with the longer. Each point on the left branch of H1 has d1 = d2, as in
FIGURE 7, but each point on the right branch of H1 has D1 = D2. On the left branch
of H2 we have D1 = d2, and on the right branch of H2 we have d1 = D2, as indicated
by tick marks in FIGURE 8b. Circular directrices play a deeper role than indicated in
FIGURE 6.

This is illustrated further in FIGURE 9a, which can be thought of as a continuation
of FIGURE 8b. As radius R2 increases, the asymptotes of hyperbola H2 become more
and more horizontal until R2 reaches a critical value for which H2 degenerates to a pair
of rays emanating from the foci. For points on the degenerate hyperbola, | f2 − f1| is
the distance between the foci, which is also f1 + f2, the sum of focal distances from
points on the line segment joining the foci. This segment is a degenerate ellipse. As R2

increases beyond the critical value and the circular directrices C1 and C2 intersect as
shown in FIGURE 9a, hyperbola H2 in FIGURE 8b is replaced by a confocal ellipse E2

on which d1 = d2. On the left branch of H1 we have d1 = d2, and on its right branch
we have D1 = D2, as in FIGURE 8b. As radius R2 increases further, so that C2 contains
C1 in its interior, as in FIGURE 9b, hyperbola H1 also degenerates and is replaced by a
second confocal ellipse E1 on which d1 = d2.
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(a) (b)
H1 H1

E2
E1E2

Figure 9 (a) Hyperbola H2 in FIGURE 8b is replaced by ellipse E2. (b) Hyperbolas H1
and H2 in FIGURE 8b are replaced by ellipses E1 and E2, respectively.

Extended bifocal property of the ellipse and hyperbola

The next theorem provides an extended bifocal property which has the same form
for the ellipse and for the hyperbola. It is stated in terms of the shortest distances d1,
d2 to the focal circles. Recall that the sum of focal distances f1 + f2 from any point
on a ellipse to its foci is a constant equal to the length of the major axis, which we
denote by A. On a hyperbola, the difference | f1 − f2| of focal distances is another
constant equal to the length of the transverse axis, which we denote by B. On the left
branch (enclosing focus F1) we have f2 − f1 = B, and on the other branch we have
f1 − f2 = B.

THEOREM 2.

(a) Given an ellipse with major axis of length A, and given two focal circles C1, C2 of
radii R1, R2. Let d = R1 + R2 − A. Then each point on the ellipse satisfies

d1 + d2 = |d| (5)

or
|d1 − d2| = |d|. (6)

(b) Given a hyperbola with transverse axis of length B, and given the same focal
circles as in (a). Let d ′ = B − (R1 + R2). Then each point on the left branch of
the hyperbola satisfies

d1 + d2 = |d
′
| + 2R1 (7)

or
|d1 − d2| = |d

′
| + 2R1. (8)

Each point on the right branch satisfies

d1 + d2 = |d
′
| + 2R2 (9)

or
|d1 − d2| = |d

′
| + 2R2. (10)

If R1 = R2, then on both branches we have d1 + d2 = B or |d1 − d2| = B.

Proof of (a). We consider two cases, depending on the algebraic sign of d .

Case 1. d ≤ 0, so R1 + R2 ≤ A. If both focal circles lie inside the ellipse, then d1 =

f1 − R1 and d2 = f2 − R2, hence d1 + d2 = f1 + f2 − (R1 + R2) = A− (R1 + R2) =

−d = |d|, so (5) holds on the entire ellipse.
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If the ellipse intersects a focal circle, say C1, then at the point of intersection we
have d1 = 0, f1 = R1, d2 = f2 − R2 = A − f1 − R2 = A − (R1 + R2) = −d = |d|,
hence both (5) and (6) are satisfied at this point. But Lemma 2 shows that for this value
of d , (6) holds for every point of the ellipse in regions 1 or 2. A similar argument works
if the ellipse intersects focal circle C2. This proves (a) in Case 1.

Case 2. d > 0, so R1 + R2 > A. Now the focal circles intersect each other and also
intersect the ellipse. At a point where C1 intersects the ellipse we have d1 = 0, f1 =

R1, d2 = f2 − R2 = A − f1 − R2 = A − (R1 + R2) = −d , hence d1 − d2 = d = |d|
at the point of intersection. But Lemma 2(1) shows that d1 − d2 = d for every point of
the ellipse in region 1, and that d2 − d1 = d in region 2. Also, Lemma 1(4) shows that
d1 + d2 = d for every point of the ellipse in region 4. This proves (a) in Case 2.

Proof of (b). On a hyperbola | f1 − f2| is constant, so B = | f1 − f2|. Again we
consider two cases, depending on the relation between B and R1 + R2.

Case 1. B ≥ R1 + R2. In this case the focal circles do not intersect, and at most
one of them can intersect the hyperbola. If neither focal circle intersects the hyperbola,
then f1 = R1 + d1 and f2 = R2 + d2, hence d1 − d2 = f1 − f2 + R2 − R1, which is
the same as d2 − d1 = f2 − f1 + R1 − R2. On the left branch, f1 < f2, so f2 − f1 = B
and d2 − d1 = B + R1 − R2 = B − (R1 + R2)+ 2R1, so (8) is satisfied everywhere
on this branch.

On the right branch, f2 < f1, so f1 − f2 = B and d1 − d2 = B + R2 − R1 = B −
(R1 + R2)+ 2R2, so (10) is satisfied everywhere on this branch.

Now suppose that one focal circle, say C1, intersects the hyperbola. At a point of
intersection we have d1 = 0, R1 = f1 so d2 − d1 = f2 − R2 = f2 − f1 + R1 − R2 =

B + R1 − R2 = B − (R1 + R2)+ 2R1. By Lemma 2(3), d2 − d1 has the same value
everywhere in region 3, hence (8) holds everywhere in region 3. Now by Lemma 1(1),
in region 1 we have d1 + d2 = f2 − f1 − R2 + R1 = B − (R1 + R2) + 2R1, so (7)
holds everywhere in region 1. Therefore either (7) or (8) holds on the left branch,
whereas (10) holds everywhere on the right branch. If, however, focal circle C2 inter-
sects the hyperbola, then the same type of argument shows that either (9) or (10) holds
on the right branch, and (8) holds everywhere on the left branch. This proves (b) in
Case 1.

Case 2. B < R1 + R2. In this case the focal circles overlap and each intersects the
hyperbola. The same type of argument used for Case 1 shows that, on the left branch,
(7) holds in regions 3 and 4, and (8) holds in region 1. Similarly, on the right branch,
(9) holds in regions 3 and 4, and (10) holds in region 2.

Bifocal properties transferred to the parabola

The extended bifocal properties of the central conics were obtained by replacing each
focus by a focal circle. Although the parabola has only one focus, we can transfer the
extended bifocal properties to the parabola by keeping one focal circle fixed and mov-
ing the second focus to∞, allowing the radius of the second focal circle to increase
without bound. The second focal circle now becomes a line perpendicular to the focal
axis, which we call a floating focal line. The central conic becomes a parabola whose
focus is the center of the fixed focal circle, and whose directrix is parallel to the floating
focal line. As expected, the bifocal properties of the central conics can be transferred
to the focal circle and the floating focal line.

This process is consistent with the geometric definition of conics as sections of a
cone. Recall that a plane cutting one nappe of a right circular cone produces an ellipse.
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As the plane is tilted to become nearly parallel to a generator of the cone, the ellipse
becomes more elongated, and when the cutting plane is parallel to a generator the
intersection becomes a parabola. Tilt the plane even further so it cuts both nappes, and
the intersection is a hyperbola. Thus, as a section of a cone, the parabola is a transition
between the ellipse and hyperbola, so it’s not surprising that properties of the parabola
can be obtained as limiting cases of those of a central conic.

First we introduce the parabolic version of circular directrices. For central conics,
circular directrices occur in pairs, each a special focal circle. In the parabolic version,
one of the circular directrices is replaced by a limiting line called a floating directrix.

Pairs of circular and floating directrices for the parabola Recall that a parabola
has only one focus F , and is the locus of a point P that moves in a plane with its focal
distance PF always equal to its distance PD from a fixed line D, called its directrix
(FIGURE 10a). We call D the linear directrix of the parabola, to distinguish it from
circular directrices, which we define as follows. Any line L parallel to directrix D
we call a floating focal line. In FIGUREs 10b and 10c, L is between F and D. Let
R denote the distance between L and D. Then the focal circle C(R) of radius R and
center F is called a circular directrix for the parabola, relative to L . In this context,
line L is also called a floating directrix corresponding to the circular directrix. This
terminology was chosen because for every point P on the parabola we have dC = dL ,
where dC is the shortest distance from P to focal circle C(R), and dL is the distance
from P to L . This common distance is PF − R, as shown in FIGURES 10b and 10c.
When the radius of C is zero, circular directrix C becomes the focus of the parabola,
and floating directrix L becomes its classical directrix D, as in FIGURE 10a.

L = D

F

D L D L D D ′L

(a) (b) (c) (d)

Figure 10 (a) Focus and directrix of a parabola. In (b)–(d), circular directrix and floating
directrix. In (d), two intersecting confocal parabolas with linear directrices D and D′, but
with the same circular directrix and floating directrix.

As expected, each circular directrix of a parabola can be obtained as the limiting
case of a circular directrix of a central conic by sending one of the foci to ∞. To
illustrate, begin with an ellipse and two circular directrices C1, C2, as in FIGURE 6b
or 6c, where d1 = d2 for each point on the ellipse. Let Q be the point where circle
C2 intersects the focal axis. Keep F1, R1 and Q fixed, and move focus F2 along the
focal axis arbitrarily far away, so that R2 →∞. Then, the limiting circle C2 becomes
a line L through Q perpendicular to the focal axis. The radial distance d2 becomes
dL , the distance from P to L , and the ellipse becomes a limit curve with the property
that d1 = dL at each of its points. This limit curve is, in fact, a parabola with focus
F1 and linear directrix D, whose distance from L is R1, because each of its points is
equidistant from F1 and D. The circular directrix C1 for the ellipse is now a circular
directrix for the parabola with L as its floating directrix. The parabola opens to the
right, as in FIGURES 10b and 10c. The initial choice of Q determines the position of
the floating directrix L .
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We can arrive at the same circular directrix and the same floating directrix L by
starting with the left branch of the hyperbola shown in FIGURE 7, keeping F1, R1 and
Q fixed as before, and letting R2 → ∞. If Q is between F1 and the vertex of the
left branch, as in FIGURE 7c, the limit curve is a parabola that opens to the left and
intersects the first parabola, as shown by the example in FIGURE 10d, with its linear
directrix D′ parallel to L . Both parabolas intersect the floating directrix L and the
circular directrix at the same points.

Parabolic version of the extended bifocal properties The extended bifocal prop-
erties of central conics in Theorems 1 and 2 have counterparts for the parabola. They
can be obtained by starting with two focal circles C1 and C2 of a central conic, and
letting the radius of one of them, say R2, go to∞, keeping F1, R1, and Q fixed, as was
done earlier. The limiting C2 becomes a floating focal line L through Q perpendicular
to the focal axis, and the limiting central conic becomes a parabola with focus F1 and
focal circle C1. The new properties relate C1 and L .

FIGURE 11a shows what happens to FIGURE 5 in this limiting case, and FIGURE

11b shows how the four central conics in FIGURE 4a become four parabolas. On the
solid portions of the parabolas, the sum of distances d1 + dL to the focal circle and the
floating focal line is constant, just as on the corresponding ellipses and hyperbolas in
FIGURE 4a. On the dashed portions, the absolute difference |d1 − dL | is constant, just
as on the corresponding central conics in FIGURE 4a. FIGURE 11b also illustrates the
following parabolic counterparts of Theorems 1 and 2, whose proofs are omitted.

1

2
3

4

(a) (b) (c)

Figure 11 (a) Four regions formed by a focal circle and a coplanar line. (b) Limiting
case of FIGURE 4a when the ellipses and hyperbolas become four parabolas. (c) Family
of parabolic trapezoids obtained as limiting case of FIGURE 4b.

THEOREM 3. Given a circle C with center at F, and a coplanar line L. If P is
in the plane of C and L, let dC and dL denote the shortest distances from P to C
and L, respectively. Then the locus of points P such that either the sum dC + dL or
the absolute difference |dC − dL | is constant is part of a parabola with focus F and
directrix parallel to L.

THEOREM 4. Given a parabola with a focal circle C, and given any line L parallel
to its directrix D, whose distance from D is the radius of C. Then either the sum
dC + dL or the absolute difference |dC − dL | is constant.

String construction for the parabola When focal circle C has radius 0, the property
that dC + dL is constant reduces to dF + dL is constant, and leads to a string construc-
tion for the parabola, illustrated in FIGURE 12a. One endpoint of a string of constant
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length is fastened to a fixed point, but the other end is attached to a small ring that
slides freely along a rigid rod (a fixed line) that may or may not pass through the fixed
point. Again, the string is kept taut by a pencil that moves so that the sum of distances
from the pencil to the fixed point and to the fixed line is the constant length of the
string. The pencil traces a portion of a parabola with the fixed point as its focus. A
second parabola with the same focus can be drawn by placing the pencil on the other
side of the fixed line, as indicated in FIGURE 12a. Kepler [3, p. 110] devised a similar
string construction for the parabola that does not use a ring and produces only one of
the two parabolas. Our construction for two confocal parabolas is justified by the dia-
gram in FIGURE 12b, which shows the common circular directrix of the two parabolas
with the fixed line as floating directrix.

circular directrix

floating directrix

Figure 12 (a) String construction that gives two confocal parabolas, one on either side
of the fixed line. (b) Justification of construction, using the common circular directrix of
the two parabolas, with the corresponding floating directrix.

FIGURE 13a shows an equivalent form of the string construction in FIGURE 12a
with a focal circle C of radius R > 0 centered at F . Then dC = dF − R, and the
constant sum dF + dL is replaced by dC + dL = dF + dL − R, another constant. The
small ring that moves freely around the rigid boundary of the focal circle allows the
pencil to trace the parabolas in FIGURE 12. Similarly, the two tubes and the single ring
in the string mechanism of FIGURE 3 could be replaced by two small rings (illustrated
by two examples in FIGURE 13b) that move freely around the two focal circles, with

ring

ring ring
ring

d1
d2

(a) (b)

Figure 13 Alternative string construction (a) for parabolas, using a focal circle, and (b)
for central conics, using two focal circles.
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one end of the string attached to each ring. The pencil keeps the string taut so that the
two portions of the string are in the appropriate radial directions.

Application of Theorem 3 to a pursuit problem A classical pursuit problem in-
volves an aircraft flying at constant speed v > 0 from a given point A toward a fixed
base F (FIGURE 14a). Because visibility is limited, an automatic pilot always aims
the aircraft toward F . Ordinarily, the path would be along a straight line from A to F .
However, a steady north wind with constant speed w forces the aircraft off course, so
its trajectory is along a curved path which depends on the ratio of the speeds v and w.
The problem is to determine this path.

(a) (b)

wind wind

w > v

w = v

w < v

w = 0

W

V

F

P

L
v sin

F

A

Figure 14 (a) Qualitative shape of trajectory depends on speeds v and w. (b) When
v = w, the sum dF + dL is constant above L, whereas dF − dL is constant below L, hence
the trajectory is a parabola with focus F .

If w > v, the craft cannot overcome the influence of the wind and moves further
away from the base, approaching asymptotically the line due north from F . But if
v > w, the aircraft overcomes the influence of the wind and returns to F along a curved
path. These two solutions, which seem intuitively reasonable, can also be verified ana-
lytically by solving a suitable differential equation. The dashed curves in FIGURE 14a
indicate the qualitative nature of the solutions. The line segment from A to F shows
the path when w = 0.

The case of interest for us is whenw = v. In this case the solution of the differential
equation is part of a parabola, shown as the solid curve in FIGURE 14a. Point F is the
focus of this parabola. The aircraft moves along the parabola until it is due north of F
at which point it remains stationary because the effect of its speed and that of the wind
cancel each other. We shall obtain this solution by applying Theorem 3.

Choose a line L through F perpendicular to the wind direction, as in FIGURE 14b.
We regard L as a focal line, and let F serve as a focal point. Let P denote a general
point on the path of the aircraft, and let dF and dL denote its distances from F and L ,
respectively, as indicated in FIGURE 14b. Line L divides the trajectory into two parts,
one above L and one below. We will show that the sum dF + dL is constant when P is
above L , and that the difference dF − dL is the same constant when P is below L . By
Theorem 3 with C = F , this will prove that the path is a parabola with focus F .

Suppose P is above L . Let θ denote the angle between L and the line joining F to P.
In general, point P moves along a tangent vector to the path with velocity V+W, the
resultant of two vectors V and W of lengths v = |V| andw = |W|. We are considering
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the case in which w = v. Vector W, in the direction of the wind, acts to increase dL

at the time rate v. But V acts to decrease dL by a component of magnitude v sin θ
opposite to W. Hence the resultant V +W has a component in the direction of W
equal to v − v sin θ , which represents the time rate of change of dL . Similarly, the
component of the resultant in the direction of V is v sin θ − v, which represents the
time rate of change of dF . Therefore the time rate of change of the sum dF + dL is
zero, hence dF + dL is constant. This constant is dF when dL = 0, and is the distance
from F to the point where L intersects the trajectory.

When P is below L the analysis is similar, except that both V and W act to
decrease dL so the resultant V +W has a component in the direction of W with
magnitude v + v sin θ , whose negative is the time rate of change of dL , and a com-
ponent in the direction of V of the same magnitude, whose negative is the time
rate of change of dF . Therefore the time rate of change of the difference dF − dL

is zero, hence dF − dL is constant, the same constant obtained when P is above L .
This shows that the trajectory satisfies Theorem 3, so it is a parabola with focus
at F .

Modified pursuit problem The problem can be modified so that the parabola is re-
placed by other conics. Specifically, suppose a wind of constant speed v blows radially
outward from a given point F0 different from F . This particular application may not
conform to reality, but other more realistic physical situations can be imagined that
involve the same ideas. In this case one can verify, with analysis similar to that given
above, that the aircraft moves along a portion of an ellipse. If the wind blows radially
inward toward F0, then the aircraft moves along a portion of a hyperbola. In both cases
the foci are at F0 and F .

Concluding remarks

Replacing a focus of a conic by a focal circle is a very simple idea that has profound
consequences. It allows us to obtain new characteristic properties of central conics and
to extend them to a parabola, and vice versa.

The classical characterization of an ellipse as the locus of points whose sum of focal
distances f1 + f2 is constant, and the hyperbola as the locus of points whose absolute
distance | f1 − f2| is constant, has been generalized to a common bifocal property
|d1 ± d2| is constant, where d1 and d2 are the shortest distances from a point to the
focal circles. By allowing the radius of one of the focal circles to become infinite, we
obtained corresponding properties for the parabola. We also introduced special pairs
of focal circles, called circular directrices, which provide equidistant properties for
central conics analogous to the classical focus-directrix equidistant property for the
parabola.

It should be mentioned that in an earlier paper [1] we replaced the foci of a central
conic by circular disks, called focal disks, whose centers are not necessarily at the foci,
and found a new set of properties that characterize the conics in terms of the sums and
differences of tangent lengths to the focal disks. This characterization occurs naturally
when the conics are regarded as sections of a twisted cylinder, of which the circular
cone is a special case.
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Summary We introduce a string mechanism that traces both elliptic and hyperbolic arcs having the same foci.
This suggests replacing each focus by a focal circle centered at that focus, a simple step that leads to new charac-
teristic properties of central conics that also extend to the parabola.

The classical description of an ellipse and hyperbola as the locus of a point whose sum or absolute difference
of focal distances is constant, is generalized to a common bifocal property, in which the sum or absolute difference
of the distances to the focal circles is constant. Surprisingly, each of the sum or difference can be constant on both
the ellipse and hyperbola. When the radius of one focal circle is infinite, the bifocal property becomes a new
property of the parabola.

We also introduce special focal circles, called circular directrices, which provide equidistance properties for
central conics analogous to the classical focus-directrix property of the parabola. Those familiar with paper-
folding activities for constructing an ellipse or hyperbola using a circle as a guide, will be pleased to learn that
the guiding circle is, in fact, a circular directrix.
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Is it possible that well over a thousand years back, mathematicians knew of an approx-
imation to the sine function that yields close to 99% accuracy, using a function that is
simply a ratio of two quadratic functions? Such is the case, and the formula in question
was found by the Indian mathematician Bhāskarā I: if 0 ≤ x ≤ 180, then

sin x◦ ≈
4x(180− x)

40500− x(180− x)
. (1)

This article is about how one may find such a formula, and what makes it “tick.”
Bhāskarā I (600–680) belonged to the school of mathematics established by the

great Indian mathematician Āryabhat.a (476–550). Āryabhat.a lived in what has been
called the golden age in India, when great advances were being made in fields as
diverse as science, art, mathematics, astronomy, technology, and philosophy. The dec-
imal numeration system and use of zero were developed during this period. Āryabhat.a
established a flourishing school of mathematics in northern India, but only one of his
works has survived to modern times: the Āryabhatı̄yā, a terse compendium of results
in arithmetic, algebra, areas of plane figures, volumes of solids, and astronomy—all
set in Sanskrit verse. References to another work, the Arya Siddhantha, have been
found in the works of later Indian mathematicians such as Varahamihira (500–587),
Bhāskarā I himself, and Brahmagupta (598–670); but this work appears to be lost; see
Plofker [7].

Bhāskarā I wrote valuable commentaries on Āryabhat.a’s work in mathematics and
astronomy, and the lasting influence of Āryabhat.a’s work owes in no small measure
to these expository works. (Historians have given him the designation “Bhāskarā I”
in order to distinguish him from the later and much more famous Bhāskarā of Indian
mathematics—Bhāskarā II, the twelfth century mathematician who wrote the lyrical
work Lı̄lavati.)

The Āryabhatı̄yā has a table of sine values, stated in a rather unfamiliar form. It is
actually a table of first differences of chord lengths corresponding to different central
angles, and stated in an alphabetic code invented by Āryabhat.a himself. It also gives a
recursive rule for computing these differences. The story of how the word used in that
text for chord length, jyā, eventually morphed into the term used today, sin, over the
course of a journey spanning six centuries and three continents, has been beautifully
told by Eves; see [2, page 105].

Bhāskarā’s formula (1) first appears in his book Mahābhāskarı̄ya; he attributes it to
Āryabhat.a, but as there is no mention of the formula anywhere in the Āryabhatı̄yā, we
shall refer to it as Bhāskarā’s formula (though in the title of this article we do call it the
Bhāskarā-Āryabhat.a formula). As per the custom of the time, he stated the formula in
stylized verse. Here is how it has been translated by Plofker in [7, p. 81]:

The degree of the arc, subtracted from the total degrees of half a circle, multiplied
by the remainder from that [subtraction], are put down twice. [In one place] they

Math. Mag. 84 (2011) 98–107. doi:10.4169/math.mag.84.2.98. c©Mathematical Association of America
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are subtracted from sky-cloud-arrow-sky-ocean [40500]; [in] the second place,
[divided] by one-fourth of [that] remainder [and] multiplied by the final result
[i.e., the trigonometric radius].

This prescription may be cast in a form more familiar to us. Let f (x) be defined for
real numbers x lying between 0 and 180, thus:

f (x) =
4x(180− x)

40500− x(180− x)
.

(We ignore the bit about multiplication by the radius; this serves to give the chord
length rather than the sine value. To be precise, if a chord has central angle θ in a circle
of radius R, then its length is 2R sin(θ/2).) The approximation given by Bhāskarā I
states that if 0 ≤ x ≤ 180, then sin x◦ ≈ f (x).

From the form of f it is clear that f (x) = f (180− x), so the formula captures the
symmetry of the sine function about the 90◦ point. Here is a comparison of the values
of sin x◦ and f (x), given to three significant figures, for some x-values:

x 0 15 30 45 60 75 90

sin x◦ 0 0.259 0.5 0.707 0.866 0.966 1

f (x) 0 0.260 0.5 0.706 0.865 0.965 1

We see a striking closeness between the two sets of values. It is clear that f (x) yields
a very good approximation to the sine function over the interval [0◦, 180◦]. See [3] for
another such comparison of values.

As part of our study of this approximation, we give a heuristic derivation of the
above function, and use various criteria to measure the degree of closeness of the
intended approximation.

A simpler formulation

A change of origin and scale allows us to cast the problem in a more appealing way.
We first note that

f (90− x) =
4(90− x)(90+ x)

32400+ x2
, f (90− 90x) =

4(1− x2)

4+ x2
.

Since cos x◦ = sin(90− x)◦, Bhāskarā’s approximation (1) may be stated in an equiv-
alent form as follows:

For −1 ≤ x ≤ 1, cos 90x◦ ≈
4(1− x2)

4+ x2
.

For our purposes, a still more convenient form is obtained by switching to radian mea-
sure:

For −1 ≤ x ≤ 1, cos
πx

2
≈

4(1− x2)

4+ x2
.

For convenience we shall refer to the function B(x) := 4(1 − x2)/(4 + x2) as the
Bhāskarā function. It is no good presenting the graphs of C(x) := cosπx/2 and B(x)
on the same pair of axes, because the two graphs cannot be distinguished by the eye.
We present them, instead, side by side (see FIGURE 1); their closeness is evident.
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Figure 1 Graphs of C(x) = cos(πx/2) and B(x) = 4(1− x2)/(4+ x2)

How good an approximation is it?

Various criteria may be used to assess how close two given functions are to each
other. We make the following observations with regard to the two functions C(x) =
cosπx/2 and B(x) = 4(1− x2)/(4+ x2) defined on the interval [−1, 1].

1. Both functions are even, and both are concave over −1 ≤ x ≤ 1. Their points of
intersection with the two axes match exactly.

2. Other than x = ±1 and x = 0, the curves also intersect at x = ±2/3. (Indeed, these
five values of x give all the points of intersection of the two curves.)

3. Comparison of area. The areas of the regions enclosed by the curves and the x-axis
may be compared: ∫

+1

−1
cos

πx

2
dx =

4

π
≈ 1.27324,∫

+1

−1

4(1− x2)

4+ x2
dx = 20 tan−1 1

2
− 8 ≈ 1.27295.

The values compare favourably.
4. The slopes at the left endpoint are C ′(−1) = π/2 ≈ 1.571 and B ′(−1) = 1.6.
5. FIGURE 2 shows the graph of C(x) − B(x) over −1 ≤ x ≤ 1. We see that the

maximum value of |C(x)− B(x)| over this interval is roughly 0.0016. The plot
has been made using Mathematica; use of its FindRoot function reveals that the
maximum is achieved at x ≈ ±0.872.

FIGURE 3 shows the graph of the percentage error, 100(1− B(x)/C(x)), made
in using B(x) to estimate C(x). Observe that the percentage error is largest for x
close to ±1. The use of L’Hôpital’s rule shows that the percentage error tends to
|1− 16/5π | ≈ 1.9% as x →±1. However, for |x | < 0.9, the error does not exceed
1%.

6. Using some of the known irrational values of the cosine function, we get moderately
good rational approximations to these numbers, thus:

• For x = 1/2 we get C(x) = 1/
√

2, B(x) = 12/17, hence
√

2 ≈ 17/12. The
error is about 0.17%.

• For x = 1/3 we get C(x) =
√

3/2, B(x) = 32/37, hence
√

3 ≈ 64/37. The
error is about 0.13%.

• For x = 4/5 we get C(x) = (
√

5− 1)/4, B(x) = 9/29, hence
√

5 ≈ 65/29.
The error is about 0.24%.
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Figure 2 Graph of C(x) − B(x) over
−1 ≤ x ≤ 1
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Figure 3 Graph of 100(1− B(x)/C(x))
over −1 ≤ x ≤ 1

The Padé approximant

To understand the relationship between the functions C and B a bit better, it helps
to recall the basic facts about Padé approximants. Given a function f and integers
m, n ≥ 0, the Padé approximant of order (m, n) to f is that rational function

r(x) =
p0 + p1x + p2x2

+ · · · + pm xm

1+ q1x + q2x2 + · · · + qn xn

for which f (x) and r(x) agree at x = 0 up to the (m + n)-th derivative; the m + n + 1
coefficients are found using these m + n + 1 conditions. (See [1] for details.) Padé
approximants are very useful in numerical work, as they provide an efficient tool for
computing the values of otherwise intractable functions. For example, over the interval
−0.5 ≤ x ≤ 0.5, the exponential function ex is extremely well approximated by its
Padé approximant of order (3, 3),

120+ 60x + 12x2
+ x3

120− 60x + 12x2 − x3
,

the error never being more than 1 part in 107.
Let us now find the Padé approximant of order (2, 2) for the function C(x) =

cosπx/2. As the function is even, we need to include only the even powers of x in
the approximant. Hence r(x) has the form

r(x) =
a + bx2

1+ cx2
,

where the constants a, b, c are to be found. The zeroth, second and fourth derivatives
of C(x) evaluated at x = 0 are

1, −
π 2

4
,

π 4

16
.

(The odd order derivatives of C(x) and r(x), evaluated at x = 0, are all 0, so we do
not need to worry about them.) The zeroth, second, and fourth derivatives of r(x)
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evaluated at x = 0 are

a, 2(b − ac), 24c(ac − b).

So we want

a = 1, 2(b − ac) = −
π 2

4
, 24c(ac − b) =

π4

16
.

Solving these equations for a, b, c we get:

a = 1, b = −
5π 2

48
, c =

π 2

48
.

Thus the desired function is

r(x) =
48− 5π 2x2

48+ π 2x2
.

We see that Bhāskarā’s function B(x) is close to being a Padé approximant to
cosπx/2; but its coefficients are slightly different. It is therefore reasonable to ask
how these two rational approximants compare with each other.

By design, r(x) agrees with cosπx/2 at x = 0 for derivatives up to order 4. How-
ever it does not do so well on other fronts. The intersections of the graph of r(x) with
the x-axis occur at x = ±c where c =

√
48/5π2, i.e., at x ≈ ±0.9862, which falls a

bit short of ±1. The area enclosed by the curve and the x-axis is∫
+c

−c

48− 5π2x2

48+ π 2x
dx ≈ 1.2664.

The discrepancy between this and the true value (1.27324) is larger than for Bhāskarā’s
function B(x).

FIGURE 4 shows the graph of C(x)− r(x) over−1 ≤ x ≤ 1. We see that the curve
lies above the x-axis (i.e., C(x)− r(x) ≥ 0 for −1 ≤ x ≤ 1) and has a very flat por-
tion around x = 0; this is clearly a consequence of the equality of the first four deriva-
tives of C(x) and r(x) at x = 0. But outside this region the curve rises more steeply,
and the maximum value of |C(x)− r(x)| over −1 ≤ x ≤ 1, achieved at x = ±1, is

cos
(πx

2

)
−

48− 5π2x2

π2x2 + 48

–1 –0.5 0.5 1
x

0.002

0.004

0.006

0.008

0.01

0.012

Figure 4 Graph of cosπx/2− (48− 5π2x2)/(48+ π2x2) over −1 ≤ x ≤ 1
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much larger than the maximum value of |C(x)− B(x)| over −1 ≤ x ≤ 1. (Indeed,
max−1≤x≤1 |C(x)− r(x)| is roughly 0.023, as compared to a maximum value of about
0.0016 for |C(x)− B(x)|.)

It is curious that Bhāskarā’s function B(x) out-performs the Padé approximant r(x)
on many counts.

Heuristic derivation of Bhaskara’s function

We now show a heuristic way of arriving at Bhāskarā’s function B(x) as a rational
approximation for C(x) = cosπx/2 over the interval −1 ≤ x ≤ 1.

Since the graph of C(x) over −1 ≤ x ≤ 1 is a concave arch passing through the
points (±1, 0) and (0, 1), a simple minded first approximation to C(x) over the same
interval is the function 1− x2, whose graph shows the same features. But this function
consistently yields an overestimate (except, of course, at x = 0,±1); see FIGURE 5.

0.5

1.0

0.5 1.0−0.5−1.0

cos x/2

1 − x2

x

Figure 5 Graphs of cos(πx/2) and 1− x2 over −1 ≤ x ≤ 1

In order to “fix” the overestimate, we examine the quotient

p(x) =
1− x2

cosπx/2

a little more closely. FIGURE 6 shows the graph of p(x) for −1 ≤ x ≤ 1. Note that at
x = ±1 the indeterminate form 0/0 is encountered, but if we require p to be continu-
ous at x = ±1 and use L’Hôpital’s rule, then we get p(±1) = 4/π ≈ 1.27.

0.5

1.0

0.5 1.0−0.5−1.0

x

cos x/2
1 − x2

Figure 6 Graph of (1− x2)/ cos(πx/2) over −1 ≤ x ≤ 1
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(For fixing the overestimate, we could also study the reciprocal of p(x), namely,
the function cos(πx/2)/(1 − x2), rather than p(x); but we opt for p(x) as its graph
has a more familiar shape and proves easier to approximate.)

The shape is strongly suggestive of a parabolic function, so let us look for such
a function to fit the data. To this end we mark three points on the graph: (0, 1) and
(±2/3, 10/9); conveniently for us, points with rational coordinates are available. For
the parabola y = d + ex2 to pass through them we must have d = 1 and d + 4e/9 =
10/9, giving e = 1/4. So the desired parabolic function is y = 1+ x2/4, which means
that we have the approximate relation

1− x2

cosπx/2
≈ 1+

x2

4
(−1 ≤ x ≤ 1).

This leads right away to Bhāskarā’s approximation, in which all the coefficients are
rational numbers:

cos
πx

2
≈

1− x2

1+ x2/4
=

4(1− x2)

4+ x2
.

Adjustments using the Maclaurin series

Since the Maclaurin series for C(x) = cosπx/2 about x = 0 is 1 − π 2x2/8 + · · · ,
while that of B(x) = 4(1− x2)/(4+ x2) about x = 0 is 1− 5x2/4+ · · · , the close-
ness of the two functions C(x) and B(x) for −1 ≤ x ≤ 1 may also be attributed to the
approximate relation π2/8 ≈ 5/4 (which is equivalent to π 2

≈ 10).
Now the approximation π 2

≈ 9.9 is clearly better than π2
≈ 10 (naturally, we pre-

fer to use a rational approximation for π 2). Can we exploit this fact and improve on
Bhāskarā’s approximation, by replacing the ‘4’ in that approximation by some suit-
able number a? The Maclaurin series for a(1 − x2)/(a + x2) about x = 0 is 1 −
(1 + 1/a)x2

+ · · · , so we must solve the equation 1 + 1/a = 9.9/8 for a; we get
a = 80/19. This yields a new approximation:

B1(x) :=
80(1− x2)

80+ 19x2
.

Does this do better than Bhāskarā’s approximation, B(x)? Contrary to expectation, it
does not. It does do better on the interval −0.5 ≤ x ≤ 0.5; for example, for x = 0.4
we have:

cos 0.2π ≈ 0.8090, B(0.4) ≈ 0.8077, B1(0.4) ≈ 0.8092.

But outside this interval, Bhāskarā’s function continues to do better; for example, for
x = 0.8 we have:

cos 0.4π ≈ 0.3090, B(0.8) ≈ 0.3103, B1(0.8) ≈ 0.3125.

Approaches using the functional equation

Another approach, quite different in motivation, comes from the basic functional equa-
tion satisfied by the cosine function: cos 2x = 2 cos2 x − 1. This suggests that a pos-
sible criterion for closeness between a candidate function g(x) and the cosine function
C(x), on the interval [−1, 1], is the closeness between g(x) and 2 (g(x/2))2 − 1, on
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the same interval. Invoking the least-squares philosophy, we could look for a function
g, within some well-defined class, which minimizes the quantity∫

+1

−1

(
g(x)− 2(g(x/2))2 + 1

)2
dx .

We shall stick to functions g(x) of the type (a + bx2)/(c + x2) which satisfy the
boundary conditions g(0) = 1, g(±1) = 0; these imply that a = c, b = −a. So our
class consists of all the functions g(x, a) of the type

g(x, a) :=
a(1− x2)

a + x2
,

where a is a real number.
Analytically attempting to find the value of a that minimizes the function

k(a) :=
∫
+1

−1

(
g(x, a)− 2(g(x/2, a))2 + 1

)2
dx

leads to decidedly unpleasant expressions, so we opt instead to do it numerically, us-
ing Mathematica. (We can use Mathematica’s FullSimplify command to get k(a) in
closed form, but the form is so forbidding that our aspirations for a closed form mini-
mization quickly cool down.) FIGURES 7 and 8 display plots of k(a) for 1 ≤ a ≤ 6 and
3.8 ≤ a ≤ 4.8, respectively, obtained using this CAS. We see that a minimum value of
k(a) occurs near a = 4.3. Use of the FindRoot function of Mathematica allows us to
get this value more precisely; it is roughly 4.294.

2 3 4 5 6
a

0.001

0.002

0.003

0.004

0.005

k(a)

Figure 7 Plot of k(a) for 1.0 ≤ a ≤ 6.0

3.8 4.2 4.4 4.6 4.8
a

0.00001

0.00002

0.00003

0.00004

0.00005

k(a)

Figure 8 Plot of k(a) for 3.8 ≤ a ≤ 4.8

This idea can be extended by recalling another functional equation satisfied by the
cosine function: cos 3x = 4 cos3 x − 3 cos x . Now we seek the value of a that mini-
mizes the following function j (a):

j (a) :=
∫
+1

−1

(
g(x, a)− 4(g(x/3, a))3 + 3g(x/3, a)

)2
dx .

A plot of j (a) for 4.0 ≤ a ≤ 4.8 is shown in FIGURE 9. Once again, we use the
FindRoot function to find more precisely the minimizing value of a; it is found to be
roughly 4.366.
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4.2 4.4 4.6 4.8
a

0.00001

0.00002

0.00003

0.00004

j (a)

Figure 9 Plot of j(a) for 4.0 ≤ a ≤ 4.8

It is striking that the values of a that minimize k(a) and j (a) respectively are both
close to 4; this means that the functions they yield are numerically not very far from
Bhāskarā’s function B(x).

Remarks on the origin of the approximation

It is remarkable that Bhāskarā’s approximation has fielded all the challenges we have
thrown at it, and has walked away with credit!

There remains now the crucial question of the origin of the approximation. How
did Bhāskarā I hit upon his formula? Unfortunately, we draw a blank here. Despite
much thought having gone into this question, the origins remain obscure. Possible
explanations have been offered, for example, in [9, p. 105], [4, pp. 121–136], [5, pp.
39–41], [6, pp. 39–41]; but these are essentially derivations from a modern viewpoint,
much like the one in this article. In that respect none of them seems really satisfactory.

A feature common to early Indian mathematical writing is that justifications are
rarely (if ever) given. (An exception is provided by the Kerala school of mathematics
which flourished between the 14th and 16th centuries; see [7] and [8, pp. 291–306].)
In the absence of definitive data, we may never know just how Bhāskarā I came upon
this truly remarkable approximation; whether actually it is Āryabhat.a’s work and not
Bhāskarā’s; or how so non-intuitive a notion as one function approximating another
might have arisen in that distant era. It is not the kind of relation that one would hit
upon by chance, and one can only speculate about the depth of mathematical insight
needed to find it.
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Summary In the seventh century AD the Indian mathematician Bhāskarā I gave a curious rational approxi-
mation to the sine function; he stated that if 0 ≤ x ≤ 180 then sin x deg is approximately equal to 4x(180 −
x)/(40500− x(180− x)). He stated this in verse form, in the style of the day, and attributed it to his illustrious
predecessor Āryabhat.a (fifth century AD); however there is no trace of such a formula in Āryabhat.a’s known
works. Considering the simplicity of the formula it turns out to be astonishingly accurate. Bhāskarā did not give
any justification for the formula, nor did he qualify it in any way. In this paper we examine the formula from an
empirical point of view, measuring its goodness of fit against various criteria. We find that the formula measures
well, and indeed that these different criteria yield formulas that are very close to the one given by Bhāskarā.
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Integrals Don’t Have Anything to Do with
Discrete Math, Do They?

P . MARK KAYLL
University of Montana

Missoula, MT 59812-0864
mark.kayll@umontana.edu

To students just beginning their study of mathematics, the subject appears to come in
two distinct flavours: continuous and discrete. The former is embodied by the calcu-
lus, into which many math majors delve extensively, while the latter has its own in-
troductory course (often entitled Discrete Mathematics) whose overlap with calculus
is slight. The distinction persists as we learn more mathematics, since most advanced
undergraduate math courses have their focus on one side or the other of this apparent
divide.

This article attempts to bridge the divide by describing one surprising connection
between continuous and discrete mathematics. Its goal is to convince readers that the
two worlds are not so very far apart. Though they may frequently feel like polar oppo-
sites, there are also times when they join to become one, like antipodal points in pro-
jective space. Therefore, any serious study of discrete math ought to include a healthy
dose of the continuous, and vice versa.

Before we are done, various players from both worlds will make their appearance:
rook polynomials, derangements, the gamma function, and the Gaussian density (just
to name the headliners).

Teaser To whet the reader’s appetite, we begin with a challenge.

PROBLEM 1. Give a combinatorial proof that∫
∞

0
(t3
− 6t2

+ 9t − 2)e−t dt = 1; (1)

i.e., count something that, on one hand, is easily seen to number the left side of (1) and
on the other, the right.

For a delightful treatment of combinatorial proofs in general, see [4].
At first blush, Problem 1 may appear to be out of reach—a combinatorial proof of

an integral identity—what in heavens should we count? The answer provides part of
the fun of writing (and hopefully reading) this article.

Entities: continuous and discrete

After introducing our objects of study, we reveal some of their connections in the
next few sections, and also present a solution to Problem 1. In an attempt to make the
article self-contained, we include an appendix containing some basic facts and other
curiosities about these objects.

Math. Mag. 84 (2011) 108–119. doi:10.4169/math.mag.84.2.108. c©Mathematical Association of America
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Integrals The integral on the left side of (1) belongs to a family of integrals enjoying
discrete connections. The family’s matriarch is Euler’s gamma function, which can be
defined, for 0 < x <∞, by

0(x) :=
∫
∞

0
t x−1e−t dt. (2)

One can check that this improper integral converges for such x ; see, e.g., [2, pp. 11–
12]. (In fact, 0 need not be confined to the positive real numbers—it is possible to
extend its definition so that 0 becomes a meromorphic function on the complex plane,
with poles at the origin and each negative integer; see, e.g., [1, p. 199] or [11, p. 54]—
but we’ll restrict our attention to positive real x .)

Some close cousins of the gamma function are certain ‘probability moments.’ For
integers n ≥ 0, the nth moment (of a Gaussian random variable with mean 0 and vari-
ance 1, i.e., a standard normal random variable) is defined by

Mn :=
1
√

2π

∫
∞

−∞

tne−t2/2 dt.

These integrals also converge (see, e.g., [8, p. 148]), and though probability language
enters in their naming, we won’t be making much use of this connection. Since we do
need the fact that M0 = 1 (see Theorem 4), we present a standard proof of this identity
in the Appendix (Lemma 6).

Graphs The right side of (1)—i.e., the number 1—counts the ‘perfect matchings’
in a certain graph. While we shall assume that the reader is familiar with graphs, we
nevertheless introduce the few required elementary notions. Any standard graph theory
text should suffice to close our expositional gaps; see, e.g., [5].

Recall that a graph G = (V, E) consists of a finite set V (of vertices), together
with a set E of unordered pairs {x, y} (edges) with x 6= y and both of x, y ∈ V . (Such
graphs are called simple graphs in [5, p. 3].) A graph is complete if, for each pair
x, y of distinct vertices, the edge {x, y} appears in E . FIGURE 1 depicts the complete
graphs with 1 ≤ |V | ≤ 6 and introduces the standard notation Kn for the complete
graph on n ≥ 1 vertices.

K3 K4 K5 K6K1 K2

Figure 1 Complete graphs on up to six vertices

The second graph family of primary interest in this article is the collection of bipar-
tite graphs G, i.e., those for which the vertex set admits a partition V = X ⊕ Y into
nonempty sets X, Y such that each edge of G is of the form {x, y}, with x ∈ X and
y ∈ Y . One often forms a mental picture of a bipartite graph by imagining two rows
of dots—a row for X and a row for Y —together with a collection of line segments xy
joining an x ∈ X to a y ∈ Y whenever {x, y} ∈ E . In the next definition, we fix two
positive integers n, m. The bipartite graph (X ⊕ Y, E) for which |X | = n, |Y | = m,
and E consists of all nm possible edges between X and Y is called a complete bipartite
graph and denoted by Kn,m . The bipartite graphs arising in this article are the complete
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bipartite ones for which n = m (for n ≥ 1) and their spanning subgraphs, i.e., those
bipartite graphs (X ⊕ Y, E) with |X | = |Y | = n. It’s worth noting that a subgraph H
of G is a spanning subgraph exactly when they share a common vertex set; the edge
set of H may form any subset of the edge set of G, including the empty set. FIGURE 2
depicts a few small bipartite graphs.

Y

(c) a spanning subgraph of K3,3(a) a bipartite graph

X

(b) the complete bipartite graph K3,3

Figure 2 Bipartite and complete bipartite graphs

A first brush between continuous and discrete For the gamma function (2), it is
easy to check that 0(1) = 1, and integration by parts yields the recurrence

0(x + 1) = x0(x), (3)

valid for positive real numbers x . It follows by mathematical induction that each non-
negative integer n satisfies 0(n + 1) = n!; i.e., the gamma function generalizes the
factorial function to the real numbers.

Given this generalization, a natural question to ponder might be: What values does
0 take on at half-integers? The reader might enjoy showing that

0

(
1

2

)
=
√
π (4)

and then using (3) to prove that

0

(
n +

1

2

)
=
(2n)!

√
π

4nn!

whenever n is a nonnegative integer. (Corollary 7 in the Appendix provides a key step
in this exercise.) The ease in determining 0 at half-integers belies the dearth of known
exact values; for example, no simple expression is known for 0(1/3) or 0(1/4)—see
[11, p. 55], or, for a more recent and specific discussion, [15].

What good, we might ask, is a continuous version of the factorial function? One
answer is that a careful study of 0 can be used to establish Stirling’s approximation
for n!:

n! ∼
√

2πn
(n

e

)n
, (5)

published by James Stirling [18, p. 137] in 1730. (Here and below, the symbol ∼
means that the ratio of the left to the right side tends to 1 as n →∞.) See, e.g., [14]
for an elementary proof of (5) starting from the definition (2) of 0. A complex-analytic
proof, based on the extension of 0 to Cr {0,−1,−2, . . .} to which we alluded earlier,
appears in [1, pp. 201–204]. However it’s reached, the estimate (5), involving two of
the most famous mathematical constants and invoking only basic algebraic operations,
is no doubt beautiful. Moreover, it is useful any time one wants to gain insight into the
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growth rate of functions involving factorials. For example, using (5), one easily shows
that (

2n

n

)
∼

22n

√
πn
,

and so learns something about the asymptotics of the Catalan numbers
(2n

n

)
/(n + 1)

(see, e.g., [17, pp. 219–229] for more on this pervasive sequence).
Our purpose is to refute the first part of this article’s title, and as we move in that

direction, we can’t resist sharing a couple more fun facts about 0 that enhance the
stature of 0 in the gallery of basic mathematical functions. First, as long as x is not an
integer, we have

0(x)0(1− x) =
π

sin(πx)
,

which generalizes (4). This ‘complement formula’ was first proved by Leonhard Euler;
see, e.g., [1, pp. 198–199] or [11, p. 59] for modern proofs. Second, if

ζ(x) :=
∞∑

k=1

1

kx

denotes the Riemann zeta function, then whenever 0(x) is finite, we have

ζ(x)0(x) =
∫
∞

0

t x−1

et − 1
dt, (6)

which bears a striking resemblance to (2); again, see [1, p. 214] or [11, pp. 59–60] for
proofs. Because of ζ ’s central role in connecting number theory to complex analysis,
the relation (6) opens deeper connections of 0 to number theory (beyond those stem-
ming from the factorial function). Viewing number theory as falling within the discrete
realm, we see in (6) a further refutation of this article’s title.

Counting perfect matchings in Kn,n

A matching M in a bipartite graph G = (X ⊕ Y, E) is a subset M ⊆ E such that the
edges in M are pairwise disjoint. We think of M as ‘matching up’ some members of
X with some members of Y . If every x ∈ X appears in some e ∈ M , and likewise for
Y , then we call M a perfect matching. It is a simple exercise to show that if G contains
a perfect matching, then |X | = |Y |, so that G is a spanning subgraph of some Kn,n .
FIGURE 3 highlights one matching within each of the graphs in FIGURE 2.

(c)(a) (b)

Figure 3 Matchings in the graphs of FIGURE 2 indicated by bold edges; those in (b) and
(c) are perfect.
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Given a bipartite graph G, we might be interested to know how many perfect match-
ings it contains; we use (G) to denote this number.1 Let’s warm up by asking for the
value of (Kn,n); a moment’s reflection shows that for each integer n ≥ 1, the an-
swer is n!. (To see this, continue to denote the ‘bipartition’ by (X, Y ), and notice that
the perfect matchings of Kn,n are in one-to-one correspondence with the bijections
between X and Y .) Since n! = 0(n + 1), we have proven our first result.

PROPOSITION 2. (Kn,n) =

∫
∞

0
tne−t dt.

If we replace Kn,n by a different bipartite graph, how must we modify the formula
in Proposition 2? It turns out that a so-called ‘rook polynomial’ should replace the
polynomial tn .

Rook polynomials Given a graph G and an integer r , we denote by µG(r) the num-
ber of matchings in G containing exactly r edges.

EXAMPLE 1. (THE GRAPH G = K3,3 − {{x1, y1}, {x2, y2}, {x3, y3}}) This is the
graph in FIGURE 2(c). Since the empty matching contains no edges, we have µG(0) =
1; since each singleton edge forms a matching, we have µG(1) = 6, and since G con-
tains two perfect matchings, we have µG(3) = 2. Fixing a vertex x , we see that there
are three matchings of size two using either of the edges incident with x and three
more two-edge matchings not meeting x ; thus µG(2) = 9.

Now suppose that G is a spanning subgraph of Kn,n . The rook polynomial of G is
defined by

RG(t) :=
n∑

r=0

(−1)rµG(r)t
n−r .

See [10, p. 8] or [16, pp. 164–166] for the etymology of this term.

EXAMPLE 1. (CONTINUED) Based on our observations in the first part of this ex-
ample, we see that

RG(t) = t3
− 6t2

+ 9t − 2;

we’re getting a little ahead of ourselves, but this is the polynomial appearing in the
integrand in Problem 1.

EXAMPLE 2. (EMPTY GRAPHS) If G is the empty graph on 2n vertices (i.e., |V | =
2n and E = ∅), then

µG(r) =

{
0 if r > 0
1 if r = 0,

so that RG(t) = tn; keeping ahead of ourselves, notice that this polynomial appears in
the integrand in Proposition 2.

EXAMPLE 3. (PERFECT MATCHINGS) If G consists of n pairwise disjoint edges
(i.e., G is induced by a perfect matching), then one can easily see that µG(r) =

(n
r

)
for

0 ≤ r ≤ n. Thus, the binomial theorem shows that RG(t) = (t − 1)n .

1We chose this notation because (whether we write it in English or Greek!) the letter XI ( ) resembles a
perfect matching in a graph of order six, and, conveniently enough, six is a perfect number.
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Continuing to let G denote a spanning subgraph of Kn,n , we now define its bipartite
complement G̃; this graph shares the vertex set of G and has for edges all the edges of
Kn,n that are not in G. We’re ready to state a generalization of Proposition 2. To avoid
possible confusion as to which graph is being complemented, we use next H instead
of G to denote a generic graph.

THEOREM 3. (GODSIL [9, THEOREM 3.2]; JONI AND ROTA [12, COROLLARY

2.1]) If H is a spanning subgraph of Kn,n , then

(H) =
∫
∞

0
RH̃ (t)e

−t dt.

The proof of Theorem 3 is beyond our scope, but we’ll present two applications in
the following sections; [7] presents a recent proof. Theorem 3 generalizes Proposi-
tion 2 because the bipartite complement of Kn,n is the empty graph on 2n vertices; see
Example 2. Further generalizations of Theorem 3 are discussed in [10, pp. 9–10].

Solution to Problem 1. As noted in Example 1, the integral in Problem 1 is∫
∞

0
(t3
− 6t2

+ 9t − 2)e−t dt =
∫
∞

0
RG(t)e

−t dt, (7)

where, recall, G is the graph depicted in FIGURE 2(c) and defined at the start of Ex-
ample 1. Thus, to bring Theorem 3 to bear, it will suffice to determine a spanning
subgraph H of K3,3 such that H̃ = G. The graph H in FIGURE 4 does the trick.
Now ask: how many perfect matchings are contained in H? The answer is obviously
(H) = 1 because H is induced by the edges of a perfect matching. On the other hand,

Theorem 3 tells us that (H) coincides with (7) because H̃ = G.

H

Figure 4 A graph H with H̃ = G from FIGURE 2(c)

The fruit borne by the instantiation of Theorem 3 to the graphs in Examples 1 and 2
(respectively, a solution to Problem 1 and a proof of Proposition 2) might provide
inspiration to consider this theorem in yet another instance, this time with H̃ being the
graph(s) in Example 3. This application of Theorem 3 takes us down an atypical path
to a commonly studied class of combinatorial objects.

Derangements A derangement σ of a set S is a permutation of S with no fixed
points; i.e., σ : S → S is a bijection such that σ(x) 6= x for each x ∈ S. Counting
the number of derangements of a finite set is a standard problem in introductory
combinatorics and probability texts. We’ll let Dn denote the set of derangements of
{1, 2, . . . , n} and dn = |Dn|. We can easily determine these parameters for the smallest
few values of n; TABLE 1 displays the results. We leave it as an exercise to show that
d5 = 44 and (for the punishment gluttons) d6 = 265. But what is the pattern? Perhaps
surprisingly, one way to obtain a general expression for dn is to invoke Theorem 3.

Consider the bipartite graph G obtained from Kn,n by removing the edges of a per-
fect matching; say, G = Kn,n − {{x1, y1}, {x2, y2}, . . . , {xn, yn}}. Notice that each per-
fect matching in G corresponds to exactly one derangement of {1, 2, . . . , n} and vice
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TABLE 1: Derangement numbers and their corresponding
derangements for 1 ≤ n ≤ 4

n dn Dn

1 0 ∅
2 1 {21}
3 2 {231, 312}
4 9 {2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321}

versa. Thus, dn = (G). Since the bipartite complement of G is the graph considered
in Example 3, Theorem 3 implies that

dn =

∫
∞

0
(t − 1)ne−t dt. (8)

If we separate the integral and change variables on the first subinterval, an evaluation
of 0 presents itself:

dn =

∫
∞

1
(t − 1)ne−t dt +

∫ 1

0
(t − 1)ne−t dt

=

∫
∞

0
xne−(x+1) dx +

∫ 1

0
(t − 1)ne−t dt

= e−10(n + 1) + En, (9)

where we now view the second integral as an error term En . It turns out that En doesn’t
contribute much to dn; since e−t < 1 on the interval (0, 1), we obtain

|En| ≤

∫ 1

0

∣∣(t − 1)ne−t
∣∣ dt <

∫ 1

0
(1− t)n dt =

1

n + 1
.

This shows that for each n ≥ 1, the error satisfies |En| < 1/2, and it follows from (9)
that dn is the integer closest to e−10(n + 1), i.e., to n!/e.

Remarks The nonstandard derivation of dn presented above is due to Godsil [10,
pp. 8–9]. More typical approaches (e.g., [6, pp. 77–78] or [13, pp. 71, 109–110])—
that apply either the principle of inclusion-exclusion or generating functions—lead to
a perhaps more familiar expression

dn = n!
n∑

k=0

(−1)k

k!
(10)

for the derangement numbers. Starting from (8), this ‘standard’ expression (10) for dn

requires even less effort to derive than the former. We first apply the binomial theorem,
obtaining

dn =

∫
∞

0

(
n∑

k=0

(
n

k

)
(−1)k tn−k

)
e−t dt

= n!
n∑

k=0

(−1)k

k! (n − k)!

∫
∞

0
tn−ke−t dt, (11)
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and then invoke the definition (2) of 0 to replace each integral by (n − k)!, after which
(11) becomes (10). Alternately, via the MacLaurin series for 1/e, (10) is easily seen to
be equivalent to the ‘integer closest to n!/e’ description obtained via Godsil’s deriva-
tion.

Counting perfect matchings in Kn

Since matching enumeration is not confined to the realm of bipartite graphs, it is nat-
ural to seek analogues of Proposition 2 and Theorem 3 for determining (Kn) and,
more generally, (G) for a spanning subgraph G of Kn . Here again, we will expose
the speciousness of this article’s title.

A matching M in a graph G = (V, E) is defined as it is in a bipartite graph, and,
as before, if each v ∈ V is an end of some e ∈ M , then M is called perfect. FIGURE 5
displays all of the perfect matchings admitted by K4 and some of those admitted by K6.
The bracketed numbers in FIGURE 5(b) indicate how many different perfect matchings
result under the action of successive rotation by 60◦; in this way, all 15 = 2+ 3+ 6+
3+ 1 perfect matchings of K6 are obtained.

(a)

[2] [3] [6] [3] [1]

(b)

Figure 5 (a) All three perfect matchings in K4; (b) five of fifteen perfect matchings in K6

Following our earlier line of inquiry, we ask how many perfect matchings are con-
tained in Kn . Since matchings pair off vertices, the question is interesting only when
n is even; say n = 2m for an integer m ≥ 1. Let V := V (K2m) = {1, 2, . . . , 2m}. To
determine a matching M , it is enough to decide, for each vertex i ∈ V , with which ver-
tex i is paired under M . There are (2m − 1) choices for pairing with vertex 1. Having
formed this pair, say {1, j}, it remains to decide how to pair the remaining (2m − 2)
vertices. Selecting one of these, say k, there are (2m − 3) choices for pairing with ver-
tex k, namely, any member of V r {1, j, k}. Continuing in this fashion and applying
the multiplication rule of counting, we find that

(Kn) =

{
0 if n is odd
(2m − 1)(2m − 3) · · · 5 · 3 · 1 if n = 2m for an integer m ≥ 1.

(12)

The last expression, reminiscent of a factorial, is sometimes called a double factorial
which is defined, for a positive integer n, by n!! := n(n − 2)(n − 4) · · · (2 or 1)—see,
e.g., [20]. This notation shortens (12) to

(Kn) =

{
0 if n is odd
(n − 1)!! if n is even.

(13)
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When n is even (n = 2m), we have

(K2m) = (2m − 1)!! =
(2m)!

2mm!
, (14)

which leads to an alternate way to count (K2m): think of determining a matching
by permuting the elements of V in a horizontal line (in (2m)! ways) and then simply
grouping the vertices into pairs from left to right. Of course, this over-counts (K2m)—
by a factor of m! since the resulting m matching edges are ordered, and by a factor of
2m since each edge itself imposes one of two orders on its ends. After correcting for
the over-counting, we arrive at (14) and thus have a second verification of (12).

As a final refutation of our title, we’ll show that (Kn) can also be expressed as an
integral.

THEOREM 4. (GODSIL [9, THEOREM 1.2]; AZOR ET AL. [3, THEOREM 1])

(Kn) =
1
√

2π

∫
∞

−∞

tne−t2/2 dt .

Proof. The right side of the identity is the moment Mn . Since the integrand of each
Mn , for odd n, is an odd function, we have

Mn = 0 whenever n is odd. (15)

For even n, say n = 2m, we apply induction. Since M0 is the area under the curve for
the probability density function of a standard normal random variable, we have

M0 = 1; (16)

the proof of Lemma 6 below verifies this directly.
Fix an integer m ≥ 1; starting with M2m−2 and integrating by parts yields the recur-

rence

M2m = (2m − 1)M2m−2 for m ≥ 1. (17)

Now

M2m = (2m − 1)!! for m ≥ 1 (18)

follows easily from (16) and (17) by induction. Comparing (15) and (18) with (13)
shows that Theorem 4 is proved.

Just as Proposition 2 generalizes to Theorem 3, so too does Theorem 4 generalize.
For a given (not necessarily bipartite) graph G (now with n vertices instead of the
earlier 2n in the bipartite setting), the matchings polynomial is defined by PG(t) :=∑
bn/2c
r=0 (−1)rµG(r)tn−2r . To determine (G), we need to replace the factor tn in the

integrand of Theorem 4 by the matchings polynomial of the complementary graph G
of G. We close this section by stating this analogue of Theorem 3 precisely.

THEOREM 5. (GODSIL [9, THEOREM 1.2]) If G is a spanning subgraph of Kn ,
then

(G) =
1
√

2π

∫
∞

−∞

P
G
(t)e−t2/2 dt.

A proof of Theorem 5 may be found in [10, p. 6].
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Appendix

After establishing that the 0th moment M0 = 1 (which was needed in the proof of
Theorem 4), we indicate how to obtain (4). Evaluating the integral in the definition of
M0 is an enjoyable polar coordinates exercise.

LEMMA 6.
∫
∞

−∞

e−u2/2 du =
√

2π.

Proof. Denoting the integral by J, we have

J2
=

(∫
∞

−∞

e−u2/2 du

)(∫
∞

−∞

e−v
2/2 dv

)
=

∫
∞

−∞

∫
∞

−∞

e−(u
2
+v2)/2 du dv (19)

=

∫ 2π

0

∫
∞

0
r e−r2/2 dr dϑ, (20)

where we used Tonelli’s Theorem to obtain (19) (see, e.g., [21, Theorem 6.10]) and
a switch to polar coordinates to reach (20). Since the inner integral here is unity, the
result follows.

Perhaps the simplicity of the preceding proof coloured the views of Lord Kelvin
(1824–1907), as hinted in the following anecdote from [19, p. 1139]:

Once when lecturing he used the word “mathematician,” and then interrupting
himself asked his class: “Do you know what a mathematician is?” Stepping to
the blackboard he wrote upon it:—∫

∞

−∞

e−x2
dx =

√
π.

Then, putting his finger on what he had written, he turned to his class and said:
“A mathematician is one to whom that is as obvious as that twice two makes four
is to you. Liouville was a mathematician.” Then he resumed his lecture.

At any rate, now the relation (4) is almost immediate:

COROLLARY 7. 0(1/2) =
√
π.

Proof. By definition, 0(1/2) =
∫
∞

0 t−1/2e−t dt . On putting t = u2/2, we find that

0(1/2) =
√

2
∫
∞

0 e−u2/2 du, or, since the last integrand is an even function, 0(1/2) =
√

2
∫
∞

−∞
e−u2/2 du/2. Now Lemma 6 gives the value of this integral to confirm the

assertion.

Concluding remarks

Proposition 2 and Theorem 4 present just two examples of combinatorially interesting
sequences that can be expressed in the form

∫
�

tn dν for some measure ν and space�.
This topic is considered in detail in [10, Chapter 9].
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What is one to make of these connections between integrals and enumeration? We
don’t claim that integrals provide the preferred lens for viewing these counting prob-
lems. For example, nobody would make the case that the integral in Theorem 4 is the
‘right way’ to determine (Kn) because the explicit formula (12) provides a direct
route. However, perhaps surprisingly, integrals do offer one lens. And this connec-
tion between the continuous and the discrete reveals just one of the myriad ways in
which mathematics intimately links to itself. These links can benefit the mathematical
branches at either of their ends. The application to counting derangements illustrates
how continuous methods can shed light on a discrete problem, while Problem 1 and its
solution indicate how a discrete viewpoint might yield a fresh approach to an essen-
tially continuous question. This symbiotic relationship between the different branches
of mathematics should inspire students (and their teachers) not to overly specialize. As
in life, it’s better to keep one’s mind as open as possible.
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polynomials, Euler’s gamma function, derangements, and the Gaussian density. Uncloaking combinatorial proof
of an integral identity serves as a thread tying these notions together.
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Letter to the Editor

The sequence discussed in G. Minton’s Note, “Three approaches to a sequence prob-
lem,” in the February issue [4] is known as Perrin’s sequence and has a long history.
(Perrin’s sequence is defined by x1 = 0, x2 = 2, x3 = 3, and xn = xn−2 + xn−3 for
n ≥ 4.) An important question is: Is an integer prime if and only if it satisfies the Perrin
condition, n divides xn? This question was raised by R. Perrin in 1899. A counterexam-
ple, now known as a Perrin pseudoprime, was not discovered until 1982: the smallest
one is 271441. This is quite remarkable compared to, say, Fermat pseudoprimes with
base 2, for which 341 is the smallest example. Recent work by J. Grantham [3] shows
that there are infinitely many Perrin pseudoprimes. One can run the Perrin recurrence
backward and verify that if p is prime then x−p is divisible by p. When the Perrin
condition is enhanced by this additional condition, then the first composite that satis-
fies both congruences, called a symmetric Perrin pseudoprime, is 27664033. For more
information, see the references listed below.

STAN WAGON

Macalester College, St. Paul, MN 55105
wagon@macalester.edu
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Positively Prodigious Powers or
How Dudeney Done It?

ANDREW BREMNER
Arizona State University

Tempe, AZ 85287
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Henry Ernest Dudeney was a foremost constructor of puzzles during the early part of
the twentieth century. His puzzles covered an extraordinary range, from geometric dis-
sections to river crossing problems to puzzles in logic and in combinatorics. Among his
books are: The Canterbury Puzzles and Other Curious Problems [2], Amusements in
Mathematics [3], The World’s Best Word Puzzles [4], Modern Puzzles [5], 536 Puzzles
and Curious Problems [6], and More Puzzles and Curious Problems [7].

Of his mathematical puzzles, the most intriguing relate to writing an integer as the
sum of two rational cubes. For example, The Canterbury Puzzles and Other Curious
Problems [2] lists the puzzle of the “Silver Cubes,” which asks for the dimensions in
rational numbers of two cubes of silver that contain precisely 17 cubic inches. This
requires finding a pair of (positive) rational numbers x, y satisfying x3

+ y3
= 17.

The “Puzzle of the Doctor of Physic” requires finding the diameters of two spheres
(in rational numbers) whose combined volume equals that of two spheres of diameters
one foot and two feet (and, of course, different from one foot and two feet). This in
turn resolves easily into finding positive rational numbers x, y, not equal to 1, 2, with
x3
+ y3

= 13
+ 23.

The solutions given must have startled his readership, who likely were more accus-
tomed to solving simple problems in logic: for the first problem, the solution given
is (x, y) =

(
104940
40831 ,

11663
40831

)
, and for the second, (x, y) =

(
415280564497
348671682660 ,

676702467503
348671682660

)
. How

on earth did Dudeney find these solutions with their big numbers? There were no
calculators or other aids at that time, and he could only have used paper and pencil
computations. He had little formal education, starting work as a clerk in the English
civil service at the age of 13. The solutions astonished me as a young teenager when
first coming across these puzzles in the books. It took several years for me to realize
just how Dudeney must have done it!

The key is to think geometrically. The Doctor of Physic for instance asks us to find
rational numbers x, y satisfying x3

+ y3
= 9, in other words to find a rational point

(x, y) on the curve with equation x3
+ y3

= 9. The graph of this curve is shown in
FIGURE 1. We certainly know one point on the curve, namely P = (2, 1). Suppose we
construct the tangent line l to the curve at the point P . It has an equation of type y =
mx + b, so has exactly three points of intersection with the cubic curve x3

+ y3
= 9,

that is, precisely where x3
+ (mx + b)3 − 9 = 0. Since P is a point of tangency, the

cubic will have a double root at the x-coordinate (= 2) of P; and the third root will
correspond to the point Q in FIGURE 1. Now if a cubic with integer coefficients has
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Figure 1 x3
+ y3

= 9

two rational roots, then necessarily the third root will be rational. Let’s actually do this,
and find the coordinates of Q.

To compute the equation of l, we need to know the value of dy
dx at P . But x3

+

y3
= 9, and using implicit differentiation, 3x2

+ 3y2 dy
dx = 0, so that dy

dx = −
x2

y2 . Thus

at P = (2, 1), dy
dx = −

22

12 = −4. The equation of the tangent line l is therefore y − 1 =
−4(x − 2), that is, y = −4x + 9. Where does this line meet the curve? It will do
so where x3

+ (−4x + 9)3 = 9, namely, where 9(−7x3
+ 48x2

− 108x + 80) = 0.
Because of the tangency, we know there is a double root at x = 2, and sure enough,
the cubic factors to give 9(x − 2)2(20− 7x) = 0. Accordingly, the line meets the curve
again at the third point Q with x-coordinate equal to 20

7 . Since Q lies on the tangent line
y = −4x + 9, it is easy to compute the y-coordinate, namely y = − 80

7 + 9 = − 17
7 .

Thus Q =
(

20
7 ,−

17
7

)
.

We have now found a new solution to x3
+ y3

= 9 in rational numbers, specifically(
20
7

)3
+
(
−

17
7

)3
= 9. The only problem is that one of the numbers is negative, and

spheres of negative diameter pose an existential problem for the Doctor of Physic!
Well, one suggestion is simply to repeat the previous process, but start with the point
Q rather than P; this will in turn deliver a new point. However, by the following
trick, we can keep the numbers smaller in size. The curve obviously has symmetry
about the line y = x : that is, if (x, y) is a point on the curve, then so is (y, x). If
we now join the flipped point Q ′ =

(
−

17
7 ,

20
7

)
to the point P = (2, 1), we have a line

which as before meets the cubic in three points, of which we know two: so again we
should find a new point R. Here goes. The line joining

(
−

17
7 ,

20
7

)
to P has equation(

y − 20
7

)/(
20
7 − 1

)
=
(
x + 17

7

)/(
−

17
7 − 2

)
, that is, y = − 13

31 x + 57
31 . This line meets

the curve where x3
+
(
−

13
31 x + 57

31

)3
= 9, and so, expanding the parenthesis, where

3066x3
+ 3211x2

− 14079x − 9214 = 0. We know the cubic must contain the factors
x + 17

7 and x − 2: and sure enough, we get (x − 2)(7x + 17)(438x + 271) = 0, giving
the x-coordinate of the new point R as x = − 271

438 . The y-coordinate of R is now given
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by y = − 13
31 x + 57

31 =
919
438 . Sure thing,

(
−

271
438

)3
+
(

919
438

)3
= 9. But the sphere still has

negative diameter!
Of course, what we seek is a rational point on the curve which lies in the first

quadrant, where x > 0, y > 0. It appears plausible from FIGURE 1 that the tangent
line at R meets the curve again in the first quadrant. As a check, the tangent line at R
has equation y = − 844561

73441 x + 1726596
73441 , which meets the curve twice at R, and at the new

point
(

415280564497
348671682660 ,

676702467503
348671682660

)
which does indeed lie in the first quadrant, and provides

Dudeney’s solution to the problem.
For the silver cubes, Dudeney had likely noticed that 183

− 13
= 17 · 73, so that the

curve x3
+ y3

= 17 contains the point P =
(

18
7 ,−

1
7

)
. (This is presumably the reason

why he chose the number 17 in this problem.) The reader can try the above technique,
and will find that just one line needs to be drawn. The tangent line at P , namely y =
−324x + 833, meets the curve twice at P , and at the new point (x, y) =

(
104940
40831 ,

11663
40831

)
.

We have here a powerful technique for constructing new points from old. Given one
point on the curve, we can compute the tangent line and find the third point of inter-
section of the line and the curve. Given two points on the curve, we can compute the
chord joining them, and again determine the third point of intersection with the curve.
For obvious reasons, this procedure is usually called the chord-and-tangent method.
It turns out that the set of rational points on the curve is actually a group, and what
we are doing is adding two points in this group. For technical reasons, there’s a slight
subtlety to mention. To add the points P , Q, we construct the chord joining P to Q,
and find the third point of intersection (u, v) of this line and the curve. Then the sum
P + Q of P and Q is defined to be the flipped point (v, u). (The reason for this is to
ensure associativity, that P + (Q + R) = (P + Q)+ R for any three points P, Q, R).
To add a point P to itself, in other words to compute P + P , usually denoted by 2P ,
we use the tangent line at P (think of Q getting closer and closer to P in the previous
description of P + Q), and proceed as above. (Remark: a group needs a zero element
which here involves talking about projective space and points at infinity, and the inter-
ested reader can find full details in, for example, the undergraduate text by Silverman
and Tate [8]). As an example, for the curve x3

+ y3
= 9 with P = (2, 1), we obtain

2P = Q ′ =
(
−

17
7 ,

20
7

)
. The second computation we did above was to add 2P to P ,

and the result is therefore 3P = 2P + P = R′ =
(

919
438 ,−

271
438

)
(remember to flip the

coordinates). We can now successively compute m P , m = 4, 5, 6, . . . by repeatedly
adding P . We get the following:

P = (2, 1), 2P =

(
−

17

7
,

20

7

)
,

3P =

(
919

438
,−

271

438

)
, 4P =

(
−

36520

90391
,

188479

90391

)
,

5P =

(
169748279

53023559
,−

152542262

53023559

)
,

6P =

(
415280564497

348671682660
,

676702467503

348671682660

)
.

So the first proper multiple of P to lie in the first quadrant is 6P .
One of the deep mathematical properties of the curve x3

+ y3
= 9 (a particular

example of an elliptic curve) is that if (u, v) is any rational point on the curve, then
one of (u, v), (v, u), must be of the form m P , m ≥ 1. So rational solutions can only be
those delivered by P, 2P, 3P, 4P, . . . . Since the multiples of P have coordinates that
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are getting increasingly large, the solution in smallest rationals sought by the Doctor
of Physic is indeed that provided by 6P .

Let’s consider more generally a curve of the form x3
+ y3

= n for an arbitrary
positive integer n. There may in fact be no rational points on the curve at all, as happens
for example when n = 3, 4, 5, 10, . . . . It is conjectured that roughly half of all such
curves fall into this category, and that in almost all the other cases, there exists a single
point P on the curve such that all the rational points on the curve are constructed by
the multiples m P of P . There are certainly exceptions. If we take n = 65, which is in
fact the smallest exception, then we can determine points (4, 1) and

(
197
86 ,

323
86

)
on the

curve x3
+ y3

= 65. But it can be shown, with a certain amount of difficulty, that there
is no point P on the curve such that (4, 1) = m1 P and

(
197
86 ,

323
86

)
= m2 P . We will not

go further here with this interesting topic, involving the rank of an elliptic curve, but
Silverman and Tate [8] can provide further information. We shall look only at curves
where there is the single point P generating all the rational points.

–5 0

–5

5

5

2P

4P3P

P

Figure 2 x3
+ y3

= 53

If P lies in the second quadrant quite a long way out along the curve, then the
multiples of P display a progression that we illustrate in FIGURE 2 for the case n = 53.
Here, the dashed lines represent the tangent line at P , the line joining P to 2P , the line
joining P to 3P , etc. The dotted lines represent the flip, or interchange of coordinates
(equivalently, reflection in the line y = x). So, for example, the dashed line through P
and 3P meets the curve again at a point which when flipped, gives 4P .

Here, for n = 53, P is the point
(
−

1819
217 ,

1872
217

)
, with x-coordinate approximately

−8.38. The first multiple of P to lie in the positive quadrant (just barely, the x-
coordinate is approximately 0.00005737) is 4P , so that the smallest solution of x3

+

y3
= 53 in positive rationals is given by

(x, y) =

(
506393152586688856052339014791228479789945849281

8826496053992240180747889267060920081280019625992613
,

33154841387299518433984238326392346830569703054672960

8826496053992240180747889267060920081280019625992613

)
.
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Fair warning: Actually finding the generator P in any numerical example can be
very difficult, and the algorithms involved are beyond the scope of this article (all the
more reason to sign up for courses in number theory and elliptic curves; Silverman [9]
is a useful but more advanced reference here). Fortunately, the algorithms have been
programmed into various computer algebra systems (Magma [1] was used for the com-
putations of this article), and for a given value of n there is good chance of being able
to find the generator.

In general, we can see from the chord-and-tangent construction that the multiples
2P, 3P, 4P, . . . will slowly move down the second quadrant branch in the direction
of the first quadrant. General theory tells us that eventually we will hit a multiple
that indeed lies in the first quadrant; but the further out the generator P , the higher
that multiple will be. Talking about Dudeney and his problem to our undergradu-
ate Math Club, I decided to try and find an example where the smallest solution
to x3

+ y3
= n in positive rationals was really big. Of course, unlike Dudeney, I’m

privileged to have access to modern computers, and it wasn’t too difficult to come
up with the case of n = 94. This is a curve where all the rational points are con-
structed from a single generator P; but P itself has very large coefficients, specifically
P =

(
−

15616184186396177
590736058375050 ,

15642626656646177
590736058375050

)
. The x-coordinate of P is roughly equal to

−26.435, so lies quite far out on the branch of the curve in the second quadrant. If we
compute the multiples of P , we find that they lie on the graph as shown in FIGURE 3.
It is not until 11P that we get a point in the first quadrant, and 11P has coordinates
given by rational fractions with about 1960 digits in each numerator and denominator!
Displaying them on a laptop can take a couple of screens.

2P

–20 –10 0

10

20

P

3P

4P
5P

6P 11P

Figure 3 x3
+ y3

= 94

Appetite whetted, the search was on for a really BIG smallest solution, and all
curves x3

+ y3
= n for n < 5000 were investigated. That turned out to be a lucky

choice of upper bound, with n = 4981 providing an excellent example. Here again,
there is a single generator P such that all rational points on x3

+ y3
= 4981 are con-

structed from the multiples m P , m = 1, 2, 3, 4, . . . . This time, we have P the truly
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enormous

P =

(
−

257939606925246188447621438691490679975801212900922908940

844629764020598246444384719838631872359173099940654040620

545095574764783903770839378131924999529858089018448819444

633765889467919259093769151294632532001392485363568534346

2071555596296481966015361953633395321697242238955227103

454437620635292130837521062487601271832430537772566
,

257939621962147135476759159353309259385636501268637858315

844629764020598246444384719838631872359173099940654040620

664774935915926423210239741782842272371536793881231144145

633765889467919259093769151294632532001392485363568534346

4814777758247640520171639291238065294727949393211324487

454437620635292130837521062487601271832430537772566

)
.

In addition, the x-coordinate of P is roughly−3053.887, a long way out on the second
quadrant branch. The multiples of P slowly progress down the second quadrant branch
until at 316P they finally enter the first quadrant. The point 316P is truly BIG. Its
coordinates are rational fractions with about 16816898 digits in each numerator and
denominator. If Dudeney had asked his readers to find two rational sided silver cubes
with volume 4981 cubic inches, he would have needed the space of approximately 80
paperback novels to write out the two fractions giving the smallest solution, with their
67 million digits!
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Summary Dudeney’s puzzles of a hundred years ago included writing integers (specifically 9 and 17) as sums
of two cubes of positive rational numbers (where in the former case, a solution other than 1, 2 is required).
We study the corresponding equations x3

+ y3
= 9 and x3

+ y3
= 17 as examples of specific elliptic curves.

The group structure is introduced, and the smallest solutions found for Dudeney’s puzzles. Generalization to
x3
+ y3

= n reveals that sometimes the smallest rational solution can be very large, for example when n = 94
and n = 4981: the latter solution involves fractions with numerator and denominator having almost 17 million
digits.
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There are many proofs of the quadratic character of 2. The text by Ireland and Rosen
contains a non-elementary proof [1, p. 69] and an elementary proof using Gauss’s
Lemma [1, p. 53], and there are also combinatorial proofs [3, 2]. Euler, in an early
paper, proved that 2 is a quadratic residue of primes of the form 8k + 1 [1, p. 70],
assuming the existence of a primitive root modulo p. Later, Gauss was the first to
give a rigorous proof that primitive roots exist. In this short note we give a complete,
elementary proof of the quadratic character of 2 assuming the existence of a primitive
root mod p.

THEOREM. The number 2 is a quadratic residue of primes of the form p = 8k + 1
and p = 8k + 7. The number 2 is not a quadratic residue of primes of the form p =
8k + 3 and p = 8k + 5.

Proof. Let p be an odd prime and let g be a primitive root modulo p. The set
{1, 2, . . . , p − 1} can be written in the form {g1

= g, g2, g3, . . . , g p−1
= 1}.

Note that g
p−1

2 = p − 1 since (g
p−1

2 )2 = 1. Also, gn is a quadratic residue if and
only if n is even.

Consider the following system of p−1
2 − 1 congruences, all mod p.

g1(1+ g(p−1)−1) = (1+ g1)

g2(1+ g(p−1)−2) = (1+ g2)

g3(1+ g(p−1)−3) = (1+ g3)

...

g
p−1

2 −1(1+ g
p−1

2 +1) = (1+ g
p−1

2 −1)

Consider the sums (1+ gk) that that appear either on the right side, or as the second
factor on the left side. Every residue appears exactly once in one of these positions

except for the values 0 = (1+ g
p−1

2 ), 1 = (1+ 0), and 2 = (1+ g p−1).
In each congruence, if the first factor is a quadratic residue then the second factor

and the product have the same character—that is, both are quadratic residues or neither
is a quadratic residue. On the other hand, if the first factor is a quadratic nonresidue
then the second factor and the product have opposite character. Consequently each
congruence contains an odd number of quadratic residues.

The rest of the proof is a simple counting argument. We may think of the system of
congruences as a table with three columns. In the first column are the powers of g from
g1 to g(p−1)/2−1, and in the second and third columns are the various sums (1+ gk).

Suppose p = 8k + 1.

(a) The table contains an odd number of congruences, each containing an odd number
of quadratic residues, so the number of quadratic residues in the table is odd. The
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number of quadratic residues in the first column is 2k − 1 (count the even powers
of g), which is also odd. So the number of quadratic residues in the second and
third columns must be even. But those columns contain every number in Z/pZ
exactly once, except for 0, 1, and 2. So the number of quadratic residues in Z/pZ ,
other than 0, 1, and 2, is even.

(b) But the number of quadratic residues in Z/pZ , other than 0 and 1, is (p − 1)/2−
1 = 4k − 1, which is odd.

(c) Since (a) and (b) differ, 2 must be a quadratic residue.

Suppose p = 8k + 3.

(a) The table contains an even number of congruences, each containing an odd number
of quadratic residues, so the number of quadratic residues in the table is even. The
number of quadratic residues in the first column is 2k, which is also even. So the
number of quadratic residues in the second and third columns must be even. But
those columns contain every number in Z/pZ exactly once, except for 0, 1, and
2. So the number of quadratic residues in Z/pZ , other than 0, 1, and 2, is even.

(b) But the number of quadratic residues in Z/pZ , other than 0 and 1, is 4k, which is
even.

(c) Since (a) and (b) coincide, 2 cannot be a quadratic residue.

The other cases (p = 8k + 5 and p = 8k + 7) work the same way. The theorem is
thus proved.
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How close to abelian can a nonabelian finite group be? Consider the dihedral group of
the square, D4. We’ll denote the counterclockwise rotations of the square in multiples
of 90 degrees by r0, r90, r180, and r270, and the reflections of the square around its
horizontal axis, vertical axis, and the two diagonals by h, v, d , and u, respectively. The
following chart lends insight into the commutativity of D4, where a 1 indicates that the
corresponding pair of elements commute [7]:

r0 r90 r180 r270 h v d u

r0 1 1 1 1 1 1 1 1
r90 1 1 1 1 0 0 0 0
r180 1 1 1 1 1 1 1 1
r270 1 1 1 1 0 0 0 0
h 1 0 1 0 1 1 0 0
v 1 0 1 0 1 1 0 0
d 1 0 1 0 0 0 1 1
u 1 0 1 0 0 0 1 1

A similar chart for an abelian group would contain all 1s, and so a natural measure of
the abelianness of a finite group is the number of 1s in the chart divided by the number
of entries. That is, let

Comm(G) = |{(a, b) ∈ G × G | ab = ba}|,

where for any set A, |A| denotes the number of elements in the set, and define

Pr(G) =
Comm(G)

|G|2
.

The quantity Pr(G) is often interpreted as the probability that two elements in G com-
mute [4, 6, 7], viewing the set of all ordered pairs of group elements as the sample
space and the set counted by Comm(G) as the event that a randomly selected pair
commutes. There are forty 1s in the above chart, so the probability that two elements
of D4 commute is Pr(D4) = 40/64 = 5/8. (A discussion of Pr(G) for other dihedral
groups and their direct products also appears in this MAGAZINE [1].)
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It turns out that 5/8 is the maximum value of Pr(G) for any nonabelian finite group
[3, 4, 6, 7]. A closer examination of the chart reveals that the key to understanding this
result lies, as is so often the case in group theory, in understanding the role of certain
subgroups. The 1s in a given row (or column) indicate the elements in the centralizer
of the corresponding element of D4. For example, the centralizer of h, denoted C(h),
is the set {r0, r180, h, v}, as indicated by the 1s in the 1st, 3rd, 5th, and 6th columns of
the chart in the row indexed by h. Two elements, r0 and r180, are distinguished by the
fact that their centralizers are all of D4, indicated by a row of 1s in the chart. These
two elements form the center of D4, denoted Z(D4).

We would expect highly commutative groups to have a large center and large cen-
tralizers. How large? By Lagrange’s Theorem the sizes of the center and centralizers in
a finite group G must divide |G|. But if g ∈ G is not in Z(G), then Z(G) ( C(g) ( G.
So |C(g)| ≤ |G|/2 and |Z(G)| ≤ |C(g)|/2 ≤ |G|/4. In particular, if |Z(G)| = |G|/4,
then |C(g)| = |G|/2 for all g 6∈ Z(G). Therefore the sizes of the center and centraliz-
ers in D4, relative to the size of D4, are as large as possible for any nonabelian finite
group. With |Z(G)| = |G|/4, then, we have

Comm(G) =
∑
g∈G

|C(g)|

=

∑
g∈Z(G)

|C(g)| +
∑

g 6∈Z(G)

|C(g)|

=

∑
g∈Z(G)

|G| +
∑

g 6∈Z(G)

1

2
|G|

=
1

4
|G| · |G| +

3

4
|G| ·

1

2
|G|

=
5

8
|G|2,

and therefore Pr(G) = 5/8.
An elegant result to be sure, but not the end of the story. We will show that this

bound is in fact a special case of two more general results that involve products of
several group elements. We obtain the first such result by generalizing the equation
ab = ba to a1a2 · · · an = an · · · a2a1 and defining

Commn(G) = |{(a1, a2, . . . , an) ∈ Gn
| a1a2 · · · an = an · · · a2a1}|

and

Pn(G) =
Commn(G)

|G|n

for n ≥ 2. Then Pn(G) is the probability that a product of n group elements is equal
to its reverse, and P2(G) = Pr(G). It is still true that Pn(G) = 1 if and only if G is
abelian since, for example, if Pn(G) = 1, then for any a, b ∈ G,

ab = aben−2
= en−2ba = ba

where e is the identity element of G. For nonabelian groups, bounds on Pn(G) natu-
rally extend the 5/8 bound. The first few values are

P2(G) ≤ 5/8 P4(G) ≤ 17/32 P6(G) ≤ 65/128

P3(G) ≤ 5/8 P5(G) ≤ 17/32 P7(G) ≤ 65/128,

and in general, we’ll prove the following theorem.
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THEOREM 1. For a nonabelian finite group G and n even, the probability that a
product of n group elements is equal to its reverse, Pn(G), satisfies

1. Pn(G) ≤
1
2 +

1
2n+1 and

2. Pn+1(G) = Pn(G).

Not surprisingly, the bounds are again realized when |Z | = |G|/4. We’ll also dis-
cuss a conjecture that Theorem 1 is actually a special case of a broader result deal-
ing with the number of transpositions in the rearrangement of the product a1a2 · · · an .
Questions for undergraduate research arise.

For the second generalization, let a permutation σ in the symmetric group Sn act on
a product of n group elements by scrambling it so that the i th element in the product
ends up in the σ(i)th position. For example, if σ ∈ S4 is the four-cycle (1, 2, 3, 4),
then

(a1a2a3a4)
σ
= a4a1a2a3.

If σ = (1, 2, . . . , n) j for some j , 1 ≤ j ≤ n − 1, we’ll call (a1a2 · · · an)
σ a cyclic

rearrangement of the product a1a2 · · · an . For example, the three cyclic rearrangements
of a1a2a3a4 are a4a1a2a3, a3a4a1a2, and a2a3a4a1.

We can then view the equation ab = ba as ab = (ab)(1,2) and ask the more general
question: What is the probability that a product a1a2 · · · an is equal to at least one cyclic
rearrangement of itself? Specifically, define

Commcyc
n (G) = |{(a1, a2, . . . , an) ∈ Gn

| a1a2 · · · an = (a1a2 · · · an)
(1,2,...,n) j

for some j, 1 ≤ j ≤ n − 1}|

and set

Pcyc
n (G) =

Commcyc
n (G)

|G|n
.

Then once again, Pcyc
2 (G) = Pr(G) and Pcyc

n (G) = 1 if and only if G is abelian. For
nonabelian groups,

Pcyc
2 (G) ≤ 5/8 Pcyc

4 (G) ≤ 29/32

Pcyc
3 (G) ≤ 13/16 Pcyc

5 (G) ≤ 61/64,

and in general, the following theorem.

THEOREM 2. For a nonabelian finite group G and n ≥ 2, the probability that a
product of n group elements is equal to a cyclic rearrangement of itself, Pcyc

n (G),
satisfies

Pcyc
n (G) ≤ 1−

3

2n+1
.

It’s interesting to note that while both Pn(G) and Pcyc
n (G) generalize the probability

that two elements commute, Pn(G) tends to 1/2 as n approaches infinity while Pcyc
n (G)

tends to 1.

The probability that a product is equal to its reverse To approach Theorem 1,
we’ll start with the following stronger version of the second part of the theorem with
n = 2, which is interesting in its own right. First, fix x in a finite group G and set

Commx(G) = |{(a, b) ∈ G × G | axb = bxa}|
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and

Px(G) =
Commx(G)

|G|2
,

so that Px(G) is the probability that two group elements “commute” around a fixed
middle element.

PROPOSITION 1. For any x in a finite group G, we have Px(G) = Pr(G).

Note that if x 6∈ Z(G), Proposition 1 does not imply that the pairs (a, b) that satisfy
axb = bxa are the same pairs that satisfy ab = ba, only that the same number of pairs
satisfy each equation.

The following elementary facts will facilitate the proof of Proposition 1, and later
Theorem 1. All are good exercises for students.

LEMMA 1. Let G be a finite group with center Z(G).

1. Suppose a and b are conjugate in G, that is, the equation x−1ax = b has at least
one solution for x in G. Then the number of such solutions is |C(a)|.

2. The products ab and ba are conjugate for all a, b ∈ G.
3. For any a, b ∈ G, if ab is in Z(G) then ab = ba.

Proof of Proposition 1. Rewrite axb = bxa as b−1(ax)b = xa. By Lemma 1, ax
and xa are conjugate, and the number of choices for b is |C(ax)|. So

Commx(G) =
∑
a∈G

|C(ax)| =
∑
g∈G

|C(g)| = Comm(G).

Dividing both sides by |G|2 completes the proof.

Since x is arbitrary, a direct consequence of Proposition 1 is that

P3(G) =

∑
x∈G Commx(G)

|G|3
=

∑
x∈G Comm(G)

|G|3
=
|G| · Comm(G)

|G|3

=
Comm(G)

|G|2
= Pr(G),

which proves Theorem 1 with n = 3. This provides the basis for an inductive proof.

Proof of Theorem 1. We’ll give an inductive argument for n even. Since P2(G) =
P3(G), the case with n odd follows similarly. So suppose

Pn(G) ≤
1

2
+

1

2n+1

for a positive even integer n. We need to show

Pn+2(G) ≤
1

2
+

1

2n+3
.

So we’re interested in when a1a2 · · · an+1an+2 = an+2an+1 · · · a2a1. Fix a2 · · · an+1 and
consider two cases.

1. a1a2 · · · an+1 ∈ Z(G). This occurs for |Z(G)| choices of a1, namely a1 =

z(a2 · · · an+1)
−1 for z ∈ Z(G). Since a1a2 · · · an+1 is in Z(G) and therefore by

Lemma 1 a1 and a2 · · · an+1 commute, the equation

a1a2 · · · an+1an+2 = an+2an+1 · · · a2a1
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reduces to

a2 · · · an+1 = an+1 · · · a2.

By the inductive assumption, this equation is satisfied by at most(
1

2
+

1

2n+1

)
|G|n

n-tuples (a2, . . . , an+1). Since we have |Z(G)| choices for a1 and |G| choices for
an+2 to fill out an (n + 2)-tuple (a1, a2, . . . , an+1, an+2) satisfying a1a2 · · · an+1an+2

= an+2an+1 · · · a2a1, we obtain a bound of

|Z(G)|

(
1

2
+

1

2n+1

)
|G|n+1

on the number of such (n + 2)-tuples.
2. a1 · · · an+1 6∈ Z(G). This occurs for |G| − |Z(G)| choices for a1. Viewing the re-

verse equation in terms of conjugation, we need to find an+2 so that

a−1
n+2(a1a2 · · · an+1)an+2 = an+1 · · · a2a1.

This is only possible if a1a2 · · · an+1 and an+1 · · · a2a1 are conjugate. In the event
that they are, the number of choices for an+2 is |C(a1a2 · · · an+1)|. Since the
choice of a2 through an+1 is arbitrary, by assuming all products a1a2 · · · an+1 and
an+1 · · · a2a1 not in Z(G) are conjugate we can bound the number of (n + 2)-tuples
in this case by

|G|n
∑

g∈G−Z(G)

|C(g)| ≤ |G|n(|G| − |Z(G)|) ·
1

2
|G| =

1

2
|G|n+1(|G| − |Z(G)|).

Combining cases 1 and 2, and recalling that |Z(G)| ≤ |G|/4, we have

Commn+2(G) ≤ |Z(G)|

(
1

2
+

1

2n+1

)
|G|n+1

+
1

2
|G|n+1(|G| − |Z(G)|)

=
1

2n+1
|Z(G)||G|n+1

+
1

2
|G|n+2

≤
1

2n+1
·

1

4
|G| · |G|n+1

+
1

2
|G|n+2

=

(
1

2
+

1

2n+3

)
|G|n+2.

Dividing by |G|n+2 completes the induction.

If |Z(G)| = |G|/4, all products a1a2 · · · an+1 and an+1 · · · a2a1 not in Z(G) are con-
jugate (and therefore the bound in Theorem 1 is realized). The proof is not trivial, but
it relies on the interesting fact that in such groups the product

a1a2 · · · ana−1
1 a−1

2 · · · a
−1
n

is a commutator, that is,

a1a2 · · · ana−1
1 a−1

2 · · · a
−1
n = xyx−1 y−1

for some x and y.



VOL. 84, NO. 2, APRIL 2011 133

Restating the problem in terms of transpositions In an attempt to generalize The-
orem 1 (and looking ahead to Theorem 2) we’ll now view the reverse of a product of
group elements in terms of a permutation acting on the product. For example,

(a1a2)
(1,2)
= a2a1

(a1a2a3)
(1,3)
= a3a2a1

(a1a2a3a4)
(1,4)(2,3)

= a4a3a2a1

(a1a2a3a4a5)
(1,5)(2,4)

= a5a4a3a2a1,

and so on. So we can reformulate the reversal equation

a1a2 · · · an = an · · · a2a1 as a1a2 · · · an = (a1a2 · · · an)
σ

where σ = (1, n)(2, n − 1) · · · . Since the number of transpositions in the disjoint cy-
cle notation for σ is bn/2c, we can rephrase Theorem 1 as

Pn(G) ≤
1

2
+

1

22k+1

where k is the number of transpositions in the disjoint cycle notation of σ =
(1, n)(2, n − 1) · · · .

This leads naturally to the following question. For any σ ∈ Sn , let Pσ
n (G) be the

probability that a1a2 · · · an = (a1a2 · · · an)
σ . Is there a nice bound for Pσ

n (G), and
does it depend on transpositions? Well, it appears so, and almost. Let n = 4 and
σ = (1, 3)(2, 4). Consider the equation

a1a2a3a4 = (a1a2a3a4)
(1,3)(2,4)

= a3a4a1a2.

Although σ factors into two transpositions, we can show that Pσ
4 (G) ≤

5
8 , the bound

for one transposition. The reason? We can view the preceding equation as

(a1a2)(a3a4) = (a3a4)(a1a2),

the action of transposing two blocks of consecutive elements. This leads to the follow-
ing definition.

DEFINITION 1. A block transposition is a permutation that transposes two disjoint
blocks of consecutive elements.

In our example, σ transposes the blocks [1, 2] and [3, 4], so we’ll write σ =
(1, 3)(2, 4) = ([1, 2], [3, 4]). We allow the blocks to have size 1, so a regular transpo-
sition is a block transposition. The blocks also may have different sizes. For example,

(a1a2a3a4a5)
(1,3,5,2,4)

= (a4a5)(a1a2a3),

so (1, 3, 5, 2, 4) = ([1, 2, 3], [4, 5]).
Much experimental evidence, obtained with the computational algebra package

GAP, suggests the following conjecture, generalizing Theorem 1.

CONJECTURE 1. For a nonabelian finite group G, n ≥ 2, and σ ∈ Sn ,

Pσ
n (G) ≤

1

2
+

1

22k+1

where k is the fewest number of block transpositions in a factorization of σ .



134 MATHEMATICS MAGAZINE

This presents two interesting problems. One, to prove (or disprove, but hopefully
not) the conjecture. Two, to determine a fast way to factor a given permutation σ into
block transpositions. Consider σ = (1, 2, 3, 5, 4) in S5 and the equation

a1a2a3a4a5 = (a1a2a3a4a5)
σ
= a4a1a2a5a3.

How many block transpositions are lurking? We can turn a1a2a3a4a5 into a4a1a2a5a3

in the following two steps:

a1a2(a3)a4(a5)→ a1a2(a5)a4(a3) = (a1a2a3a4a5)
(3,5)

and

(a1a2a5)(a4)a3 → (a4)(a1a2a5)a3 = (a1a2a5a4a3)
([1,2,3],4).

So (1, 2, 3, 5, 4) = ([1, 2, 3], 4)(3, 5) where we multiply from right to left, and there-
fore we conjecture that

P (1,2,3,5,4)
n (G) ≤ 17/32.

In the case where the block transpositions in the factorization of σ are disjoint, we
can reduce to the case where all blocks have size 1, and where there are no consecutive
fixed points. For example, consider

(a1a2a3a4a5a6a7a8)
([1,2],[7,8])(3,6)

= (a7a8)a6(a4a5)a3(a1a2).

By viewing the products in parentheses as single elements, it’s not hard to show that

P ([1,2],[7,8])(3,6)
8 (G) = P (1,5)(2,4)

5 (G).

Cyclic rearrangements We now return to Theorem 2 and the idea of a cyclic rear-
rangement. We wish to bound the probability that a1a2 · · · an is equal to at least one of
the following:

(a1a2 · · · an)
(1,2,...,n)

= ana1a2 . . . an−1

(a1a2 · · · an)
(1,2,...,n)2

= an−1ana1a2 . . . an−2

...

(a1a2 · · · an)
(1,2,...,n)n−1

= a2 · · · an−1ana1.

It’s interesting to note that each cyclic rearrangement of a1a2 · · · an results from a
single block transposition of the form

([a1 · · · ai ], [ai+1 · · · an]).

So the probability that a1a2 · · · an is equal to one particular cyclic rearrangement of
itself is at most 5/8.

Proof of Theorem 2. We would like to count all n-tuples (a1, a2, . . . , an) that satisfy
at least one of the conditions

a1a2 · · · an = (a1a2 · · · an)
(1,2,...,n) j

, 1 ≤ j ≤ n − 1.

Instead we’ll count the complement, that is, the number of (a1, a2, . . . , an) for which

a1a2 · · · an 6= (a1a2 · · · an)
(1,2,...,n) j
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for all j , 1 ≤ j ≤ n − 1. These conditions imply that g = a1a2 · · · an 6∈ Z(G), since
by Lemma 1, a1a2 · · · an ∈ Z(G) implies

a1a2 · · · an = (an− j+1 · · · an)(a1 · · · an− j ) = (a1a2 · · · an)
(1,2,...,n) j

for all j . Now let g = a1a2 · · · an and hi = ai+1 · · · an for 1 ≤ i ≤ n − 1. Then hi /∈

C(g) for all i since

g = (a1 · · · ai )(ai+1 · · · an) 6= (ai+1 · · · an)(a1 · · · ai ) = hi (gh−1
i )

if and only if ghi 6= hi g.
So for each g 6∈ Z(G), and h1 through hn−1 (not necessarily distinct) not in C(g),

we can write

g = (gh−1
1 )(h1h−1

2 )(h2h−1
3 ) · · · (hn−2h−1

n−1)hn−1

and set

a1 = gh−1
1 , a2 = h1h−1

2 , a3 = h2h−1
3 , . . . , an = hn−1.

Then for each i , 1 ≤ i ≤ n − 1, we have hi = ai+1 · · · an with hi 6∈ C(g), and therefore

(a1 · · · ai )(ai+1 · · · an) 6= (ai+1 · · · an)(a1 · · · ai ),

as required.
So in general, the number of n tuples (a1, a2, . . . , an) that we seek is equal to∑

g 6∈Z(G)

(|G| − |C(g)|)n−1.

Since |C(g)| ≤ |G|/2 and |Z(G)| ≤ |G|/4, this is at least 3
4 |G|

(
1
2 |G|

)n−1
=

3
2n+1 |G|

n

(with equality exactly when |Z(G)| = |G|/4), so

Pcyc
n (G) ≤

|G|n − 3
2n+1 |G|

n

|G|n
= 1−

3

2n+1
.

For further consideration We’ll conclude with a generalization of Theorem 2 that
suggests avenues of further investigation. Let A be a fixed subset of {(1, 2, . . . , n)i |
1 ≤ i ≤ n − 1}. Then what is the probability that a1a2 · · · an = (a1a2 · · · an)

σ for at
least one σ ∈ A? If |A| = 1 the answer is at most 5/8, and Theorem 2 gives an up-
per bound when |A| = n − 1. A slight modification of the proof will show that this
probability is at most 1 − 3

2k+2 where |A| = k. Now, instead of restricting to cyclic
rearrangements, let A be any set of k permutations, each of which factors into a single
block transposition. When does this bound still hold? What about permutations that
factor into two block transpositions? We believe that the bound for a particular rear-
rangement due to one permutation that factors into two block transpositions is 17/32
(Conjecture 1). What about a set of permutations, each of which factors into two block
transpositions? Is there a generalization along the lines of Theorem 2 for the right set
of permutations?

Theorem 2 can also be viewed as addressing a special case of the following ques-
tion: What is the probability that a1a2 · · · an = (a1a2 · · · an)

σ for at least one σ ∈ A
where A consists of the nonidentity elements of a subgroup of Sn? In Theorem 2
the subgroup is the cyclic subgroup generated by (1, 2, . . . , n). What about other
cyclic subgroups? Other subgroups? In particular, this question has been studied when
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the subgroup in question is all of Sn [5]. A group in which every product a1a2 · · · an

is equal to at least one non-identity permutation of itself is called n-rewriteable. The
groups that realize the 5/8 bound are 3-rewriteable [5], and it has been shown that the
probability that a product a1a2a3 is equal to at least one non-identity permutation of
itself is either 1 or at most 17/18 [2].

Finally, there is another useful characterization of Pr(G) that turns the problem of
determining the probability that two elements commute into an exercise in counting
conjugacy classes:

Pr(G) =
the number of conjugacy classes in G

|G|

[3, 7]. Are there analogous statements for the other probabilities that we’ve discussed?
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many helpful suggestions.
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In his popular text on abstract algebra, Gallian describes a way to measure the commu-
tativity of a finite group G [3, pp. 397–398]. An ordered pair (a, b) ∈ G × G is said
to be commuting if ab = ba. If Comm(G) is the number of commuting pairs, then let

Pr(G) = Comm(G)/|G|2

(where |S| is the cardinality of the set S). In other words, Pr(G) is the probability that
two randomly selected elements of the group actually commute.

A great deal is known about the set of fractions that can occur as Pr(G) for some
group G [2, 4, 6, 7]. For example, if 1/2 < x ≤ 1, then there is a group G with x =
Pr(G) if and only if x = (1 + 4k)/(2 · 4k) for some non-negative integer k (see the
chart on p. 246 of [7]). For example, if k = 0, then Pr(G) = 1 and G is abelian. And if
k = 1, then x = 5/8 is the largest value of P(G) for a non-abelian group. In addition,
the only other possible values of P(G) greater than 11/32 are 3/8, 25/64, 2/5, 11/27,
7/16, and 1/2. (This upper bound for Pr(G) is generalized in [5].)

This note, which is based on [1], addresses the following question: Given a pos-
itive integer m, is there an easily constructed group G such that Pr(G) = 1/m? For
example, if m = 100, then we are asking if there is a straightforward way to find a
group such that two randomly selected elements of the group commute precisely one
percent of the time. Our main result (Theorem 2) produces such a group G that is a
direct product of dihedral groups.

We also show (Theorem 3) that for any positive integer m there is a direct product
of dihedral groups G such that Pr(G) = m/m ′, where m,m ′ are relatively prime; in
fact, such a G can be found that is itself a dihedral group. We close by showing that
there is a finite group H such that Pr(H) is not a member of the set {Pr(G) : G is a
direct product of dihedral groups}.

Recall that if n is a positive integer, then the dihedral group Dn is generated by two
elements, ρ (for “rotation”) and φ (for “flip”), subject to the relations

ρn
= φ2

= e and φρ = ρ−1φ. (1)

It follows that the elements of Dn can be written as

e, ρ, . . . , ρn−1, φ, ρφ, . . . , ρn−1φ,

Math. Mag. 84 (2011) 137–140. doi:10.4169/math.mag.84.2.137. c©Mathematical Association of America
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so that |Dn| = 2n is even. If n ≥ 3, then Dn is usually interpreted as the symmetries
of a regular n-gon in the plane.

Our main computational tool will be the following result.

THEOREM 1. If n is a positive integer, then

Pr(Dn) =


n + 3

4n
if n is odd;

n + 6

4n
if n is even.

Proof. An easy computation using the relations (1) shows that, whether n is odd
or even, we have commuting pairs (ρi , ρ j ) for all 0 ≤ i, j < n, as well as (ρiφ, e),
(e, ρiφ) and (ρiφ, ρiφ) for all 0 ≤ i < n.

If n is odd, this is actually a complete list, so that there are n2
+ 3n commuting

pairs. On the other hand, if n is even, then we have the additional commuting pairs
(ρiφ, ρi+(n/2)), (ρi+(n/2), ρiφ), and (ρiφ, ρi+(n/2)φ) for all 0 ≤ i < n. Therefore, when
n is even there are n2

+ 6n commuting pairs. Since |Dn|
2
= 4n2, the result follows.

If n is a positive integer, we let dn = Pr(Dn). If n is odd, it follows that

dn =
n + 3

4n
=

2n + 6

4(2n)
= d2n,

so that {dn : n is a positive integer} = {dn : n is an even positive integer} = {1, 5/8,
1/2, 7/16, 2/5, 3/8, 5/14, . . . }.

We denote the direct product of the groups G and H by G ⊕ H , which is the carte-
sian product G × H with the usual coordinate-wise operation. It is easy to verify that
Comm(G ⊕ H) = Comm(G) · Comm(H), so

Pr(G ⊕ H) =
Comm(G ⊕ H)

|G ⊕ H |2
=

Comm(G)

|G|2
·

Comm(H)

|H |2
= Pr(G) · Pr(H).

This gives the following well-known result (see, for example, p. 1033 of [4]).

LEMMA 1. If G and H are finite groups, then Pr(G ⊕ H) = Pr(G) · Pr(H).

Let D be the set of all possible fractions that can appear as Pr(G), where G is iso-
morphic to a direct product of dihedral groups. By the lemma, D is the set of all pos-
sible products of the form dn1 · · · dnk , where n1, . . . , nk are positive integers. Clearly,
D is closed under multiplication.

Building denominators

This brings us to our main result.

THEOREM 2. For every positive integer m, there is a collection of dihedral groups,
Dn1, . . . , Dnk , such that

Pr(Dn1 ⊕ · · · ⊕ Dnk ) =
1

m
.

Proof. We want to show for all m, that 1/m ∈ D. Note that

1

1
= d1 ∈ D,

1

2
= d3 ∈ D,

1

3
= d9 ∈ D,
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so assume m ≥ 4 and the result holds for all positive integers m ′ < m.
If m is even, then m = 2m ′ for some positive integer m ′ < m. It follows that 1/m ′ ∈

D, so that

1

m
=

1

2
·

1

m ′
= d3 ·

1

m ′
∈ D.

If m is odd, then it is of the form either 4 j + 1 or 4 j + 3 for some positive integer j .
If m = 4 j + 1, then let n = 8 j + 2 = 2m and m ′ = j + 1 < m. We then have

dn =
n + 6

4n
=

8 j + 8

32 j + 8
=

j + 1

4 j + 1
=

m ′

m
.

On the other hand, if m = 4 j + 3, let n = 24 j + 18 = 6m and m ′ = j + 1 < m.
Now,

dn =
n + 6

4n
=

24 j + 24

96 j + 72
=

j + 1

4 j + 3
=

m ′

m
.

In either case, by induction, 1/m ′ ∈ D, so that

1

m
=

m ′

m
·

1

m ′
= dn ·

1

m ′
∈ D,

which completes the proof.

The above argument is actually an algorithm for expressing 1/m as Pr(G), where
G is a direct product of dihedral groups. For example, if we consider the question
mentioned at the beginning of constructing a group such that the probability of two
elements commuting is exactly one percent, it yields

1

100
= d3 ·

1

50
= d3 · d3 ·

1

25
= d3 · d3 · d50 ·

1

7

= d3 · d3 · d50 · d42 ·
1

2
= d3 · d3 · d50 · d42 · d3.

So 1/100 = Pr(G) where G is a group of order 63
· 100 · 84 = 1,814,400. Clearly,

though the method is easy to apply, it can produce groups that are exceptionally large.
Every fraction 1/m is a product of fractions of the form dn , but this expression is

not unique. For example,

d4 · d5 =
5

8
·

2

5
=

1

4
=

1

2
·

1

2
= d3 · d3.

Building numerators

We now show that every positive integer also appears as the numerator of an element
of D written in lowest terms.

THEOREM 3. If m is a positive integer, then there is a dihedral group Dn such that

Pr(Dn) =
m

m ′
,

where m ′ is an integer relatively prime to m.
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Proof. Let n = 24m − 6, which is an even positive integer, and m ′ = 4m − 1. It
follows that

Pr(Dn) =
24m − 6+ 6

96m − 24
=

m

m ′
,

and since 1 = 4m − m ′, we can conclude that m and m ′ are relatively prime.

For example, if we want m = 10 as a numerator, we need only set n = 234, so
that d234 = 240/(4 · 234) = 10/39. Again, in Theorem 2 we might have to take the
product of many dihedral groups to show that 1/m ∈ D, but in Theorem 3 it was only
necessary to use a single dihedral group to show m/m ′ ∈ D.

It is natural to ask if there are groups H for which Pr(H) is not in D. To construct
such an example, by [7] there is a group H such that Pr(H) = (1 + 16)/2 · 16 =
17/32. If n is an even positive integer with

17

32
= dn =

n + 6

4n
,

then we could conclude that 68n = 32n + 192, i.e., n = 16/3, which is not an integer.
On the other hand, any element of D which is the product of at least two dn < 1 can
be no larger than (

5

8

)2

=
25

64
<

17

32
.

Therefore, Pr(H) is not in D.
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Crossword Word Count
MATTHEW DUCHNOWSKI

Newtown, PA
mattduchnowski@yahoo.com

The number of black squares in a crossword puzzle cannot alone determine the number
of words that the puzzle contains. Interestingly though, the number of marks needed
to bound these black squares provides additional information sufficient for making the
calculation. As illustrated below, marks are used to outline all of the puzzle’s black
squares, but are not required at the puzzle’s perimeter.

THEOREM 1. The number of words in an M × N crossword puzzle is given by

M + N + n − 2b

where b black squares have been bound using n marks.

Proof. Let G = (V, E) be a rectangular M × N grid graph with V = VW ∪ VB

where the sets VB and VW represent our black and white squares, respectively. We let
|VB | = b and note that |VW | = M N − b.

Let G ′ be an induced subgraph on VW with edge set E ′. Clearly G ′ is the union of
paths which represent our puzzle’s k words. These paths have order pi and size pi − 1
for 1 ≤ i ≤ k. While most crosswords don’t contain words shorter than 3 letters, we
put no restrictions on the order or size of these paths.

Now, because each letter in a puzzle appears in exactly two words,
∑

pi =

2(M N − b) and, because each edge e ∈ E ′ lies in a unique path,

|E ′| =
k∑

i=1

(pi − 1) = 2(M N − b)− k. (1)

We also see that our n marks intersect all edges in E that are not in E ′. Using the
number of edges in an M × N grid graph, we obtain a second expression for |E ′|.

|E ′| = |E | − n = 2M N − M − N − n. (2)

Our result can now be obtained by setting (1) and (2) equal and solving for k.

Summary This short paper uses grid graphs and other concepts from elementary graph theory to enumerate the
number of words contained in a crossword puzzle.

Math. Mag. 84 (2011) 141. doi:10.4169/math.mag.84.2.141. c©Mathematical Association of America
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Parity Party with Picture Proofs:
An Odd Checkerboard Problem
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How many ways can checkers be placed on an m × n board so that each square
(whether or not it is occupied) is orthogonally adjacent to an odd number of check-
ers? For example, on a 7× 5 grid there are exactly two ways:

There is a natural even variant of the problem, where each square is adjacent to an
even number of checkers. We will call a solution to the odd (respectively, even) variant
of the problem an odd (respectively, even) solution. For an m × n board, define the
quantities

O(m, n) = the number of odd solutions, and

E(m, n) = the number of even solutions.

In this paper, we determine O(m, n) and E(m, n) exactly, using a delightful hodge-
podge of parity arguments.

The authors came upon the 8× 8 version of this problem on a Turkish puzzle web-
site [1, problem 05 from 2006], and later in a book [2, problem 192]. In the latter,
the solutions are counted up to 6× 6 (but two solutions are deemed equal if they are
symmetric). They also describe the otherwise unpublished work of Barry Cipra who
attempts to identify conditions on m and n under which a solution exists. When prov-
ing a solution does not exist, Cipra uses techniques similar to ours here.

The upper bound

In both the even or the odd variant of the problem, once the placement of checkers
in the first row is fixed, the remaining rows are completely determined because, when

Math. Mag. 84 (2011) 142–149. doi:10.4169/math.mag.84.2.142. c©Mathematical Association of America
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k ≥ 3, rows k − 2 and k − 1 determine row k, for there is only one way to place
checkers on row k so that the parity of the neighbors of checkers adjacent to each
square of row k − 1 is correct. (This is also true when k = 2, if we interpret row
k − 2 = 0 as being off the board and having no checkers.) Once several rows are
fixed, we call the process of naturally filling in rows or columns thereafter completing
a (potential) solution. (We call it a potential solution because the completion, while
uniquely defined, may fail to produce a legal configuration. It yields an actual solution
only if the last row satisfies the requirements.) An example of completing an 8× 8 odd
solution appears below:

. . .

The reader is encouraged to confirm that the first row determines each of the following
rows. For instance, in the single row on the left, the leftmost square is initially adjacent
to no checkers, so there must be a checker in the leftmost square in the second row
so that the top left square is adjacent to an odd number. In this example, the 8 × 8
completion is an actual solution.

Since there are exactly 2n ways of placing checkers in the first row, we obtain the
upper bounds on the number of solutions for the m × n board:

If m ≥ n, then O(m, n) ≤ 2n and E(m, n) ≤ 2n .

(When m < n, we can exchange the roles of m and n and obtain a bound of 2m .)

Graph theory and vector space connections

In fact, provided there is at least one solution, the number of solutions on any m × n
board must be a power of 2. Before returning to our parity proofs, we will first see
this via vector spaces. We associate a graph Gm,n whose vertices are the mn squares
of the board, with two such vertices adjacent if and only if they are horizontally or
vertically adjacent. Given an ordering of the vertices of the graph, we can form the
0–1 adjacency matrix Am,n , which is an mn × mn square matrix whose (i, j)th entry
is 0 if i th and j th vertices are adjacent in the graph, and 0 otherwise.

We note that if x is any vector of length mn with all entries being 0 or 1 (that is,
a vector in the vector space Zmn

2 over Z2), then the kth component of Ax is the sum
of all components of x corresponding to neighbors of vertex k in the graph Gm,n . If
we represent a configuration of checkers on an m × n board by the vector of length
mn whose component corresponding to a square is 1 if there is a checker present
and 0 otherwise, then we see that the vectors corresponding to the even solutions are
precisely the kernel of the adjacency matrix over Z2 (the kernel of a matrix M is the set
of all vectors x such that such that Mx = 0. Since the kernel is a subspace, it follows
that the vectors corresponding to the even solutions form a subspace Em,n of Zmn

2 over
Z2. Moreover, if the dimension of this subspace is d , then the size of the subspace
(which is E(m, n), the number of even solutions) is 2d , a power of 2.

Finally, what about the odd solutions? It is easy to check that the sum of two vectors
corresponding to any odd solutions is a vector corresponding to an even solution, and
the sum of a vector corresponding to an odd solution and a vector corresponding to an
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even solution is a vector corresponding to an odd solution. We conclude that the set
of vectors corresponding to the odd solutions is either empty, or the affine subspace
S + Em,n , where S is the vector corresponding to any odd solution. An immediate
consequence is that either O(m, n) is 0, or it is equal to E(m, n) (and hence also a
power of 2).

Throughout the remainder of the paper, we will identify the checker configurations
on a board with their corresponding 0–1 vectors, and hence talk about adding solu-
tions, the space of even solutions, a basis, and so on. But back now to the boards and
solutions. . . .

Even solutions

Consider the even variant on square boards. Each of the n starting rows that have
exactly one checker in the top row leads to a solution on an n × n board, as evidenced
by the examples below:

In particular, if the kth square of the top row has a checker, draw a rectangle with cor-
ners (k, 1), (1, k), (n, n − k + 1), (n − k + 1, k), and place checkers along the rect-
angle’s boundary and on every other square inside it. Each square is easily seen to be
adjacent to an even number of checkers. These solutions form a basis for all 2n even
solutions on the n × n board. For example, to find a solution having the fixed top row,

we add four basis solutions, one for each checker in the top row:

+ + + =

Since any top row yields a solution, we have proved that every choice for the first row
of an n × n square completes uniquely to an even solution for the n × n board, so

E(n, n) = 2n.

Furthermore, as noted earlier, O(n, n) is either 0 or 2n .
We next consider non-square m × n boards, taking m > n for convenience. Such a

board can be broken up into three components adjoined one atop the next: (1) an n × n
square, (2) a 1× n strip, and (3) an (m−n−1)× n rectangle. (The last rectangle could
be trivial with height 0.)
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n

m − n−1

n

m

We now show that if m > n, then

E(m, n) = E(m−n−1, n).

by drawing a one-to-one correspondence of solutions to the m × n board with solutions
to the (m−n−1)× n board.

We begin by fixing a solution to an (m−n−1)× n board; we will argue this solution
can be completed to the m × n board. Since we started with a solution to the (m−n−
1)× n board, the next row (that is, row m − n) must be blank. Setting the following
row equal to the row just above the blank row, we can complete the remaining square
portion uniquely to a solution to the m × n board, and we are done.

We can repeatedly apply the previous reduction to any rectangular board—exchang-
ing m and n when necessary—until it becomes square, say of side length d . Recall that
a basic step in Euclid’s gcd algorithm computes gcd(m, n) = gcd(m−n, n). Here we
are reducing E(m, n) = E(m−n−1, n). Since we are subtracting n + 1 rather than n
at each step (where n is the smaller of the two numbers), this minor augmentation of
Euclid’s algorithm ends with E(d, d) where d = gcd(m + 1, n + 1) − 1. Hence, the
reduction, when combined with our previous determination of E(m, n), implies:

E(m, n) = 2gcd(m+1,n+1)−1.

In particular, the structure of any solution consists of reflected copies of a solution
to a d × d block, separated by blank rows and columns of width 1. Here is an example
with d = 5:

Back to the odd problem

Fix m and n and suppose there exists an odd solution, say S, to the m × n board.
As we have seen, adding S to any odd solution yields an even solution, and adding
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S to any even solution yields an odd solution. Hence, when there exists an odd solu-
tion, E(m, n) = O(m, n). That is, O(m, n) is either 0 or 2gcd(m+1,n+1)−1, and we have
reduced the counting problem of odd solutions to an existence problem.

Also note that any solution to the odd problem must have an even number of check-
ers. To see why, fix such a solution S, and consider the subgraph of Gm,n induced by
the vertices corresponding to squares with checkers in S. Since S was an odd solution,
each vertex of the subgraph has odd degree. But a graph must have an even number of
odd-degree vertices, and so S has an even number of checkers.

It follows that if the m × n problem has an even solution E with an odd number of
checkers, then there are no odd solutions, as if there were an odd solution S, then either
S or S + E would have an odd number of checkers, contradicting our observation
about any solution to the odd problem having an even number of checkers.

Fix m and n and define d = 2k
− 1, where 2k is the largest power of 2 dividing both

m + 1 and n + 1. If d , (m + 1)/(d + 1), and (n + 1)/(d + 1) are all odd, then there
is an even solution to the m × n problem with an odd number of checkers obtained by
constructing an (m + 1)/(d + 1) × (n + 1)/(d + 1) quilt made up of d × d blocks,
separated by strips one square wide. Each block has checkers down one of its diago-
nals; adjacent blocks are reflections of each other. Here is an example with m = 11,
n = 19, and so d = 3, (m + 1)/(d + 1) = 3, and (n + 1)/(d + 1) = 5:

The condition that d , (m + 1)/(d + 1), and (n + 1)/(d + 1) all be odd is equivalent
to m and n being odd and ending in an equal number of ones when written in binary.
So we define,

2(n) = the number of trailing 1s when n is written in binary

Equivalently, if 2k is the largest power of 2 dividing n + 1, then 2(n) = k. This leads
us to suspect that

O(m, n) =

{
0 if m and n are odd with 2(m) = 2(n), and
2gcd(m+1,n+1)−1 otherwise.

We have already proved the case corresponding to O(m, n) = 0. To prove the re-
maining case it suffices to construct a solution, which we do in the next section.

Constructing a solution to the odd problem

It remains to construct a solution to the odd problem in the case when m or n is even,
or both are odd but with 2(m) 6= 2(n). Alas, the parity party is over, and the next
constructions are by induction.

Case: m = n even. We first focus on m = n even. For the 2× 2 and 4× 4 cases,
the solutions we take are the following:
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For n = m ≥ 6, we start with the following 4-ring (meaning 4 rows on each side)
frame:

It is easy to check that this can be the outer frame of a solution if and only if there is a
(n−4)× (n−4) solution with an outer 1-ring of the same form as the outer 1-ring of
this 4-ring (the top row blank, the second row full, the bottom row full, the second from
the bottom full except the two ends, and the left and right sides alternating nonchecker/
checker). We can continue filling the interior with this type of 4-ring until we arrive at
an inner 2× 2 or 4× 4 square. We finally complete the solution with one of the base
solutions, which both have the appropriate outer 1-ring.

Note that cutting off the top, blank row of the above n × n solution yields an odd
solution to the (n−1)× n problem for even n.

Case: m 6= n with m or n even. We next consider non-square boards which have at
least one even dimension. In this case, swap m and n if needed so that n is even, and
either m is odd or m ≥ n. We already constructed solutions when m = n or m = n − 1
and are left with two cases summarized by the diagram below:

n

m − n−1

n

m

n

m

n− m −1

n

m > n, n even m < n − 1 with m odd, n even

In the first case inductively compose an odd solution to the (m−n−1) × n board
and complete it to the m × n board. If m < n − 1 is odd, inductively compose an
(n−m−1) × n solution. (The induction is on the smaller even dimension, n.) Now,
complete that solution to an n × n board working as diagrammed. Observe that:

• from the n × n case, the solution must complete to an n × n solution; and
• since we started with a solution to the (m−n−1)× n board, the (n + 1)th row

must be blank; and so,
• the bottom m rows constitute a solution to the m × n board.

A similar inductive frame argument for square boards can be used to construct an
odd solution for a 2n × n board for n odd, with the top and bottom rows having a com-
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plete row of checkers (see http://www.mathstat.dal.ca/~brown/research/
checkerboard/appendix.pdf for details).

Case: m and n both odd (with 2(m) 6= 2(n)). We can now complete the construc-
tion for our last case, where both m and n are odd and 2(m) 6= 2(n). As in our con-
struction of the 2n × n solution, the top and bottom rows have a complete row of
checkers, tacking one blank row onto the bottom yields a (2n+1)× n solution. Once
there is one such solution, there must be 2n odd solutions (since there are that many
even solutions.) That is, every possible top row can be completed to a solution to the
(2n+1)× n board.

Using the above observations, we are now ready to complete the construction of an
odd solution when m and n are both odd and 2(m) 6= 2(n). Without loss of gener-
ality, let m > n. The case m = 2n + 1 was handled above, and we have two cases as
diagrammed below:

n

m − 2n − 2

2n + 1

m

n

m

2n − m

2n + 1

m > 2n + 1 n < m < 2n + 1

Since we can inductively assume cases only where 2(m ′) 6= 2(n′), the following
result is required to complete the induction argument: If m and n are odd with2(m) 6=
2(n), then

2(n) 6= 2(m − 2n − 2) and 2(n) 6= 2(2n − m).

To convince ourselves of this, it’s easier to show that if2(n) = 2(m − 2n − 2) (or
if 2(n) = 2(2n − m)), then 2(m) = 2(n). Fix n odd and write it in binary. Suppose
that n ends in k 1s. Now, 2(n + 1) ends in exactly k + 1 0s, and 2n ends in k 1s
followed by a 0. Here is an example with k = 3:

n ends 0111
2n ends 01110

2n + 2 ends 10000

m · · ·????
−2n − 2 − · · · 10000

· · · 0111

2n · · · 01110
−m − · · ·????

· · · 0111

It is not hard to see that the ???? must be 0111 in either case and m ends in k 1s.
Returning to the inductive construction, if m > 2n + 1, then a solution to the

(m−2n−2) × n board can be completed to a solution to the m × n board. If,
on the other hand, n < m < 2n + 1, then inductively begin with a solution to the
(2n−m)× (2n+1) board. When completing this solution to a (2n+1)× n board, the

http://www.mathstat.dal.ca/~brown/ research/checkerboard/appendix.pdf
http://www.mathstat.dal.ca/~brown/ research/checkerboard/appendix.pdf
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first additional row will be blank. Consequently, the remainder of the board constitutes
a solution to the m × n board.

Where to go from here?

We have determined the exact number of solutions to both variants of the m × n prob-
lem. In particular, the even problem has exactly 2gcd(m+1,n+1)−1 solutions, while the odd
problem has{

0 solutions if m and n are odd with 2(m) = 2(n), and
2gcd(m+1,n+1)−1 otherwise

The vector space connection via graph theory raises some interesting questions.
Suppose we stack 0, 1 or 2 checkers on each square of an m × n board, and insist that
the sum of the number of checkers be a multiple of 3; how many legal configurations
are there? We are now looking for the size of a subspace of Zmn

3 , and hence the answer
is a power of 3. What will a basis for the solutions look like?

The original question points directly at the general problem of finding the dimension
for the kernel (over the binary field) of adjacency matrices of graphs. We can claim
here the solution for the family of the cartesian products of pairs of paths.

Acknowledgment The first author would like to acknowledge the support of the National Science and Engi-
neering Research Council.
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1866. Proposed by Sadi Abu-Saymeh and Mowaffaq Hajja, Mathematics Department,
Yarmouk University, Irbid, Jordan.

Let ABC be a triangle, and L and M points on AB and AC, respectively, such that
AL = AM. Let P be the intersection of BM and CL. Prove that PB = PC if and only if
AB = AC.

1867. Proposed by Ángel Plaza and César Rodrı́guez, Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.

Let f : [0, 1] → R be a continuous function such that
∫ 1

0 f (t) dt = 1 and n a positive
integer. Show that

1. there are distinct c1, c2, . . . , cn in (0, 1) such that

f (c1)+ f (c2)+ · · · + f (cn) = n,

2. there are distinct c1, c2, . . . , cn in (0, 1) such that

1

f (c1)
+

1

f (c2)
+ · · · +

1

f (cn)
= n.

1868. Proposed by Donald E. Knuth, Stanford University, Stanford, CA.

Let n ≥ 2 be an integer. Remove the central (n − 2)2 squares from an (n + 2) ×
(n + 2) array of squares. In how many ways can the remaining squares be covered
with 4n dominoes?
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1869. Proposed by Marian Duncă, Bucharest, Romania.

Let f : R→ R be an increasing and concave-down function such that f (0) = 0. Prove
that if x , y, and z are real numbers, and a, b, and c are the lengths of the sides of a
triangle, then

(x − y)(x − z) f (a)+ (y − x)(y − z) f (b)+ (z − x)(z − y) f (c) ≥ 0.

1870. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Calculate
∞∑

n=1

∞∑
m=1

m(ζ(n + m)− 1)

(n + m)2
,

where ζ denotes the Riemann Zeta function.

Quickies

Answers to the Quickies are on page 156.

Q1009. Proposed by Paolo Perfetti, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Roma, Italy.

Let Hn =
∑n

k=1 1/n. Using the fact that
∑
∞

k=1 1/k2
= π 2/6, calculate

∑
∞

k=1 Hk/k3.

Q1010. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Let f : [0, 1] → R be a continuous real valued function with a continuous nonzero
derivative on (0, 1]. Prove that if f (0) = 0, then lim infx→0+ f (x)/ f ′(x) = 0.

Solutions

Every integer in the list divides the sum April 2010

1841. Proposed by H. A. ShahAli, Tehran, Iran.

Let n ≥ 3 be a natural number. Prove that there exist n pairwise distinct natural num-
bers such that each of them divides the sum of the remaining n − 1 numbers.

I. Solution by Northwestern University Math Problem Solving Group, Evanston, IL.
The list of numbers 1, 2, 3 · 20, 3 · 21, 3 · 22, . . . , 3 · 2n−3 has the required property.

The sum of all those numbers is

1+ 2+ 3 · 20
+ 3 · 21

+ 3 · 22
+ · · · + 3 · 2n−3

= 3+ 3 · (2n−2
− 1) = 3 · 2n−2.

Each number in the list divides the total sum, and that implies the desired condition.

II. Solution by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD; and Mark Kaplan, The Community College of Baltimore
County, Baltimore, MD.

We choose natural numbers mk given by

mk =

{
n!
(

1
k! −

1
(k+1)!

)
= n! · k

(k+1)! if 1 ≤ k ≤ n − 1,

n! · 1
n! = 1 if k = n.
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If n ≥ 3, then m1 > m2 > · · · > mn−1 > mn . In addition

S =
n∑

k=1

mk = n!

((
1−

1

2!

)
+

(
1

2!
−

1

3!

)
+ · · · +

(
1

(n − 1)!
−

1

n!

)
+

1

n!

)
= n!,

and S − mk is a multiple of mk for 1 ≤ k ≤ n.

Editor’s Note. Harris Kwong and Nicholas Singer (independently) proved that the only
solution for n = 3 is (a, 2a, 3a). Erwin Just observes that this problem is a direct
Corollary of a problem proposed by him. [Problem 1504, this MAGAZINE 70 (1997),
300.] Reiner Martin and Dmitry Fleischman (independently) provide an insight into a
way of classifying all possible solutions which can be completed as follows: If m1 <

m2 < · · · < mn satisfy that the sum S = m1 + m2 + · · · + mn is divisible by all mk ,
say S = mk · dk , then d1 > d2 > · · · > dn and

n∑
i=1

mk

S
=

n∑
i=1

1

dk
= 1.

Reciprocally, if the positive integers d1 > d2 > · · · > dn satisfy that
∑n

i=1(1/dk) = 1,
then by letting S be the least common multiple of the dk and S = mk · dk , it follows
that mk divides S and

n∑
i=1

S

dk
=

n∑
i=1

mk = S.

Thus the classification problem is equivalent to finding all possible partitions of 1 into
n different fractions with numerator 1 (called Egyptian Fractions). The first solution
is obtained from the partition 1 = 1/2+ 1/3+ 1/6 by recursively dividing by 2 and
adding 1/2 on both sides. In fact the greedy algorithm can complete any partial sum
1/m1 + 1/m2 + · · · + 1/mk < 1 to a partition 1 = 1/m1 + 1/m2 + · · · + 1/ml for
some l > m. However the complete classification is still an open problem. Some ref-
erences and related open problems can be found in R. K. Guy, Unsolved Problems in
Number Theory, Springer-Verlag, 1981, pp. 87–93; and in V. Klee and S. Wagon, Old
and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical
Association of America, 1991, pp. 175–177 and 206–208.

Also solved by Con Amore Problem Group (Denmark); Michel Bataille (France); Brian D. Beasley; D. Bed-
narchak; Gareth Bendall; Jany C. Binz (Switzerland); Lataianu Bogdan (Canada); Paul Budney; Robert Cal-
caterra; Michael J. Caulfield; Hyeong Min Choe (Korea) and Jong Jin Park (Korea); John Christopher; CMC
328; Tim Cross (United Kingdom); Chip Curtis; Robert L. Doucette; Toni Ernvall (Finland); Dmitry Fleischman;
Fullerton College Math Association; Stefania Garasto (Italy); David Getling (Germany); Eugene A. Herman;
Chris Hill; Dan Jurca; Peter Hohler (Switzerland); Bianca–Teodora Iordache (Romania); Omran Kouba (Syria);
Victor Y. Kutsenok; Harris Kwong; Elias Lampakis (Greece); Kathleen E. Lewis (Republic of the Gambia); Daniel
Lucas, Rachel White, and Meghan Loid; Reiner Martin (Germany); Shoeleh Mutameni; Pedro Perez; Ángel Plaza
(Spain); Henry Ricardo; R. Keith Roop-Eckart; Daniel M. Rosenblum; Joel Schlosberg; Harry Sedinger; Seton
Hall Problem Solving Group; Achilleas Sinefakopoulos (Greece); Nicholas C. Singer; David Stone and John
Hawkins; Taylor University Problem Solving Group; Marian Tetiva (Romania); Texas State Problem Solvers
Group; Bob Tomper; Michael Vowe (Switzerland); Stanley Xiao (Canada); and the proposer.

Perpendicular hexagon skewers April 2010

1842. Proposed by Bianca-Teodora Iordache, student, National College “Carol I,”
Craiova, Romania.

In the interior of a square of side-length 3 there are several regular hexagons whose
sum of perimeters is equal to 42 (the hexagons may overlap). Prove that there are two
perpendicular lines such that each one of them intersects at least five of the hexagons.
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Solution by CMC 328, Carleton College, Northfield, MN.
We first claim that when we project a regular hexagon of side length a onto a line its

shortest possible projection is a
√

3. To see this, observe that we can inscribe a circle
of radius a

√
3/2 within the hexagon, and the projection of the hexagon is greater than

or equal to the inscribed circle’s projection.
Now let us project all the hexagons onto an edge of the square. Since the sum of

all the hexagons’ perimeters is 42, the sum of all of their side-lengths is 7. Hence,
their projection length on one edge of the square is at least 7

√
3 ≈ 12.124. Since all

of these projections are onto a segment of length 3, and 3(4) < 7
√

3, there must be
some region in the segment covered by at least five of the projections. Pick a point in
this region and draw a line through this point perpendicular to the edge; this line must
intersect at least five hexagons. By carrying out this construction for two perpendicular
edges of the square, we get the desired two perpendicular lines.

Also solved by Robert Calcaterra, David Getling (Germany), Victor Y. Kutsenok, Charles Martin, and the
proposer.

Permutations with specified left-to-right maxima April 2010

1843. Proposed by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.

For every positive integer n, let Sn denote the set of permutations of the set Nn =

{1, 2, . . . , n}. For every 1 ≤ j ≤ n, the permutation σ ∈ Sn has a left to right maximum
(LRM) at position j , if σ(i) < σ( j)whenever i < j . Note that all σ ∈ Sn have a LRM
at position 1. Let M be a subset of Nn . Prove that the number of permutations in Sn

with LRMs at exactly the positions in M is equal to∏
k∈Nn\M

(k − 1),

where an empty product is equal to 1.

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
If 1 /∈ M , the assertion is clearly true so we may assume that 1 ∈ M . Let α be

the permutation in Sn having its LRMs at exactly the positions in M . We determine
the number of ways to choose α. Let P(x, y) be the number of permutations of y
elements selected from a set of x elements, which is known to be x !/(x − y)!; and
let m1,m2, . . . ,mk = 1 be the elements of M in descending order. Observe that n
must occupy position m1 in α. Then there are P(n − 1, n − m1) ways to choose the
elements of Nn that occupy positions m1 + 1 to n in α. Of the elements of Nn that have
not yet been assigned a position in α, the largest one must be assigned to position m2.
Consequently, we may now choose the elements of Nn that occupy positions m2 + 1 to
m1 − 1 in P(m1 − 2,m1 −m2 − 1) different ways. Repeating this argument, there are

k∏
j=1

P(m j−1 − 2,m j−1 − m j − 1)

ways to choose α, where m0 = n + 1. Since (m j − 2)!/(m j − 1)! = 1/(m j − 1) for
0 < j < k, this product may be reduced to

(n − 1)!
/ k−1∏

j=1

(m j − 1).

This expression is equivalent to the product stated in the problem.
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Also solved by Con Amore Problem Group (Denmark), Chip Curtis, Robert L. Doucette, Joe McKenna
(Ghana), Joel Schlosberg, John H. Smith, Marian Tetiva, Stanley Xiao (Canada), and the proposer. There was
one incorrect submission.

A geometric inequality for the secants of a triangle April 2010

1844. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania.

Let ABC be a triangle with a = BC, b = AC, and c = AB. Prove that

a2
+ b2
+ c2

2 · Area(ABC)
≥ sec

A

2
+ sec

B

2
+ sec

C

2
.

Solution by Felipe Pérez (student), Facultad de Fı́sica, P. Universidad Católica de
Chile, Santiago, Chile.

Let s = (a + b + c)/2 be the semiperimeter of the triangle ABC. Using the Half-
angle Formula and the Law of Cosines gives

cos2

(
A

2

)
=

1

2
(cos A + 1) =

1

2

(
b2
+ c2
− a2
+ 2bc

2bc

)
=

s(s − a)

bc
.

Thus

sec
A

2
=

√
bc

s(s − a)
, sec

B

2
=

√
ac

s(s − b)
, and sec

C

2
=

√
ab

s(s − c)
.

Then by Heron’s Formula for the area of 4ABC,

sec
A

2
+ sec

B

2
+ sec

C

2

=

√
bc

s(s − a)
+

√
ac

s(s − b)
+

√
ab

s(s − c)

=

√
b(s − c) · c(s − b)+

√
a(s − c) · c(s − a)+

√
a(s − b) · b(s − a)

√
s(s − a)(s − b)(s − c)

=

√
b(s − c) · c(s − b)+

√
a(s − c) · c(s − a)+

√
a(s − b) · b(s − a)

Area(ABC)
.

Using the Arithmetic Mean–Geometric Mean Inequality (the positiveness of each fac-
tor is justified by triangle inequality) gives√

b(s − c) · c(s − b) ≤
b(s − c)+ c(s − b)

2
,

and equivalent inequalities for the other two summands. Finally,

sec
A

2
+ sec

B

2
+ sec

C

2
≤

1

2 · Area(ABC)

(
s(2a + 2b + 2c)− (2ab + 2ac + 2bc)

)
≤

1

2 · Area(ABC)
(a2
+ b2
+ c2).

The equality holds if and only if a = b = c.
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Also solved by George Apostolopoulos (Greece); Dionne Bailey, Elsie Campbell, and Charles Diminnie;
Michel Bataille (France); Scott H. Brown; Minh Can; Tim Cross (United Kingdom); Chip Curtis; Marian Dincă;
Robert L. Doucette; John N. Fitch; A. Bathi Kasturiarachi; Omran Kouba (Syria); Elias Lampakis (Greece); Kee-
Wai Lau (China); Shoeleh Mutameni; Pedro Perez; Henry Ricardo; Achilleas Sinefakopoulos (Greece); Michael
Vowe (Switzerland); Haohao Wang and Jerzy Woydylo; John Zerger; and the proposer.

Integrating a square-fractional-reciprocal function April 2010

1845. Proposed by Albert F. S. Wong, Temasek Polytechnic, Singapore.

Evaluate ∫ 1

0

{
1

x

}2

dx,

where {α} = α − bαc denotes the fractional part of α.

Solution by Allen Stenger, Alamogordo, NM.
Make the change of variable x = 1/t to get∫ 1

0

{
1

x

}2

dx =
∫
∞

1

{t}2

t2
=

∞∑
k=1

∫ k+1

k

(t − k)2

t2
dt .

Then expand the integrands to get∫ k+1

k

(t − k)2

t2
dt =

∫ k+1

k

(
1−

2k

t
+

k2

t2

)
dt

= 1− 2k ln(k + 1)+ 2k ln k +
k2

k(k + 1)

= 2+ 2 ln(k + 1)−
(
2(k + 1) ln(k + 1)− 2k ln k

)
−

1

k + 1
.

Adding these terms from k = 1 to n − 1, noting the telescoping sum, and rearranging
gives

n−1∑
k=1

∫ k+1

k

(t − k)2

t2
dt = 2n − 2+ 2 ln(n!)− 2n ln n −

n−1∑
k=1

1

k + 1

= 2

(
ln(n!)−

(
n +

1

2

)
ln n + n

)
−

(
n∑

k=1

1

k
− ln n

)
− 1

= 2 ln

(
n!

nn+1/2e−n

)
−

(
n∑

k=1

1

k
− ln n

)
− 1.

Stirling’s formula implies that the first term goes to ln(2π) as n→∞. From the defi-
nition of Euler’s constant γ the second term goes to −γ , so the final result is∫ 1

0

{
1

x

}2

dx = ln(2π)− γ − 1 ≈ 0.260661.

Editor’s Note. Some readers pointed out that the problem of calculating the Rie-
mann sums of this integral appeared as Problem 11206, Amer. Math. Monthly 114
(2007), 928–929. Ovidiu Furdui mentions that evaluating

∫ 1
0 {k/x}2 dx for a posi-

tive integer k was published as Problem U27, Mathematical Reflections 6 (2006).
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Paolo Perfetti, Dmitry Fleischman, and Joel Schlosberg (independently) obtained
1 + 2

∑
∞

r=2(−1)r+1ζ(r)/(r + 1) as the answer for this problem. Ovidiu Furdui con-
sidered the more general problem of finding

∫ 1
0 {1/x}k dx for integer k ≥ 1. He showed

that the answer in this case is
∑
∞

r=1(ζ(r + 1)− 1)/
(k+r

r

)
.

Also solved by Armstrong Problem Solvers, Michel Bataille (France), Dennis K. Beck, Lataianu Bogdan
(Canada), Paul Budney, Robert Calcaterra, Hongwei Chen, John Christopher, Chip Curtis, Richard Daquila,
Paul Deiermann, Robert L. Doucette, Dmitry Fleischman, Jet Foncannon, Ovidiu Furdui (Romania), Michael
Goldenberg and Mark Kaplan, G.R.A.20 Problem Solving Group (Italy), J. A. Grzesik, Timothy Hall, Gerald
A. Heuer, Dan Jurca, Kamil Karayilan (Turkey), Omran Kouba (Syria), Harris Kwong, Elias Lampakis (Greece),
David P. Lang, Longxiang Li (China) and Luyuan Yu (China), Masao Mabuchi (Japan), Charles Martin, Reiner
Martin (Germany), Kim McInturff, Matthew McMullen, Peter McPolin (Northern Ireland), Paolo Perfetti (Italy),
Ángel Plaza (Spain), R. Keith Roop-Eckart, Ossama A. Saleh and Terry J. Walters, Joel Schlosberg, Edward
Schmeichel, Seton Hall Problem Solving Group, Nicholas C. Singer, David Stone and John Hawkins, Marian
Tetiva (Romania), Bob Tomper, Jan Verster (Canada), Francisco Vial (Chile), Michael Vowe (Switzerland), Stan
Wagon, Haohao Wang and Jerzy Woydylo, Vernez Wilson and Farley Mawyer, John Zacharias, and the proposer.
There were two incorrect submissions.

Answers

Solutions to the Quickies from page 151.

A1009. The answer is π4/72. For n and k positive integers,

1

n(k + n)
=

1

k

(
1

n
−

1

(k + n)

)
.

Thus

1

n2(k + n)2
=

1

k2n2
+

1

k2(k + n)2
−

2

k3

(
1

n
−

1

k + n

)
.

It follows by symmetry that

π4

36
=

∞∑
k=1

1

k2

∞∑
n=1

1

n2
=

∞∑
k=1

∞∑
n=1

1

k2n2

=

∞∑
k=1

∞∑
n=1

(
1

n2(k + n)2
−

1

k2(k + n)2
+

2

k3

(
1

n
−

1

k + n

))

=

∞∑
k=1

2

k3

∞∑
n=1

(
1

n
−

1

k + n

)
=

∞∑
k=1

2

k3

k∑
n=1

1

n
=

∞∑
k=1

2

k3
Hk .

The result follows after dividing by 2 both sides of the equality.

A1010. Because f ′ satisfies the Intermediate Value Property, f ′ is either always pos-
itive or always negative on (0, 1]. Replacing if necessary f by − f , we can assume f ′

is positive on (0, 1]. Then f is also positive on (0, 1] and thus

lim inf
x→0+

f (x)

f ′(x)
≥ 0.

Suppose lim infx→0+ f (x)/ f ′(x) > 0 and let A be a positive number such that A <
lim infx→0+ f (x)/ f ′(x). Then there exists δ, 0 < δ < 1, such that f (x)/ f ′(x) > A for
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0 < x < δ. Therefore f ′(x)/ f (x) < 1/A for 0 < x < δ and thus

ln

(
f (δ)

f (x)

)
=

∫ δ

x

f ′(t)

f (t)
dt ≤

∫ δ

x

1

A
dt =

1

A
(δ − x).

It follows that f (x) ≥ f (δ)e(x−δ)/A for 0 < x < δ. Taking limits we get

f (0) = lim
x→0+

f (x) ≥ f (δ)e−δ/A > 0.

This is a contradiction, therefore lim infx→0+ f (x)/ f ′(x) = 0.
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R E V I E W S

PAUL J. CAMPBELL, Editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Freedman, David A., Statistical Models and Causal Inference: A Dialogue with the Social Sci-
ences, Cambridge University Press, 2010; xvi + 399 pp, $93.00, $30.99 (P). ISBN 978-0-521-
19500-3, 978-0-521-12390-7.

Freedman, David A., Statistical Models: Theory and Practice, rev. ed., Cambridge University
Press, 2009; xiv + 442 pp, $103.00, $40.99 (P). ISBN 978-0-521-11243-7, 978-0-521-74385-3.

Freedman, David, Robert Pisani, and Roger Purves, Statistics, 4th ed., W.W. Norton, 2007; xvi
+ 697 pp, $99.98 ISBN 978-0-393-92972-0.

I have long admired the Statistics textbook by David Freedman et al. for showing how to think
qualitatively in statistics in the context of real situations and real data (with the sources metic-
ulously documented), as opposed to the mass of books that focus on practicing calculations on
made-up examples and fabricated data. But I haven’t used the book for a course. The book was
written, as one of its authors (not Freedman) related to me, to ease the pain of students who are
required to take a statistics course (try to find an equation in the book)! I responded that, as an
instructor at a liberal arts college, I must aspire beyond anesthetizing students and cultivating
qualitative judgment to equipping them to handle the quantitative background that informs that
judgment. David Freedman died in 2008 but left two other monuments about statistical models.
Theory and Practice is a textbook for students who have already studied statistics and preferably
are comfortable with matrix algebra and mathematical probability; it focuses on applications of
linear models (including probit and logit models) and explains bootstrap estimation. Freedman
asserts that it is “what you have to know in order to start reading empirical papers that use statis-
tical models.” There are exercises, some based on actual studies; the answers occupy 60 pp, and
another 115 pp are devoted to reprints of four papers by others that are investigated in detail in
the text. Causal Inference collects case studies by Freedman on a variety of topics (e.g., etiology
of cholera, effects of hormone replacement therapy, earthquake risk, risk from swine flu vac-
cine, salt and blood pressure). His main conclusion is that “statistical models are fragile”: Many
new techniques should not be relied on, because they make unexamined assumptions; Freedman
recommends instead “shoe leather” methods based on “subject-matter expertise” and wisdom
about what confounders to include or rule out. Memorable quote: “to pull a rabbit from a hat, a
rabbit must first be placed in the hat.” I look forward to pondering and digesting these books.

Klymchuk, Sergiy, Counterexamples in Calculus, MAA, 2010; ix + 101 pp, $45.95 (P) ($35.95
to MAA members). ISBN 978-0-88385-756-6.

This booklet features 14 pp of incorrect calculus statements that students are urged to prove false
by concocting counterexamples, with the remaining 80+ pages devoted to solutions. There is
little overlap with Gelbaum and Olsted’s Counterexamples in Analysis (1964). This is a great
resource, but the price is too high.

Math. Mag. 84 (2011) 158–159. doi:10.4169/math.mag.84.2.158. c© Mathematical Association of America
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Lisi, A. Garrett, and James Owen Weatherall, A geometric theory of everything: Deep down,
the particles and forces of the universe are a manifestation of exquisite geometry, Scientific
American 303 (6) (December 2010) 54–61.

“E8 theory may be the long-sought Theory of Everything.” E8 is the largest exceptional Lie
group, with 248 generators (“sets of circles wrapping around one another”) and whose admis-
sible representations were finally computed only in 2007 (http://aimath.org/E8/). What
is meant by this huge claim is that all the charges, patterns, and relationships among the “zoo”
of currently known subatomic particles fit exactly the patterns of symmetries of the E8 group.
Moreover, the structure and symmetries of E8 suggest further possible relationships, including
accounting for dark matter and the fact that fermions come in three varieties. The article is a tour
through the successive theories of various Lie groups that, one after another, have explained new
elementary particles and relationships. E8 culminates the tour in predicting “a rich set of Higgs
bosons,” particles so far sought in vain by experimenters. Once fully operational, the new Large
Hadron Collider will provide a test of E8 as a theory. Who ever suspected that reality could be
so complex, or that an exceptional Lie group might lie at the heart of the universe?

Borwein, Jonathan, and Peter Borwein, Experimental and Computational Mathematics: Se-
lected Writings, Perfectly Science Press, 2010; vii + 297 pp, $29.99 (P), $12.99 (Kindle), $8.99
(PDF). ISBN 978-1-9356-3805-6.

The Borweins are famous for applying computer technology to develop novel algorithms and
discover mathematical results. Fourteen articles, each with a new introductory discussion, are
reprinted here, including two each from SIAM Review and Notices of the AMS, four from the
American Mathematical Monthly, and one from Scientific American. Particularly notable is
“Closed forms: What they are and why they matter,” which delineates seven(!) approaches
to what a closed form solution means, gives a number of detailed examples, but reaches no
definitive conclusions. Although many of the articles are understandable to undergraduates,
this last one features examples that are not. (Reprints of a couple of older articles are fuzzy.)

Falbo, Clement E., First Year Calculus as Taught by R.L. Moore: An Inquiry-Based Learning
Approach, Dorrance Publishing Corp., 2010; xiv + 423 pp, $40 (P). ISBN 978-1-4349-0761-5.

Long before the contemporary pedagogical emphasis on “student-centered” approaches and
inquiry-based learning, R. L. Moore was conducting both Ph.D. dissertations and undergradu-
ate calculus courses in that spirit. This book is largely a transcription of notes taken in Moore’s
course in 1955–56 by author Falbo, who has used the method and material in his calculus
courses. One-third of the book is devoted to solutions to the exercises; so for the instructor to
pursue the Moore method, it is the instructor who should have this textbook—but not the stu-
dents. “A teacher using this text must be willing to become an ‘interested bystander’ while the
student is the one who presents solutions at the board.” Correspondingly, the students must be
interested in taking an active part in their learning, able to tolerate uncertainty and ambiguity
in their own thinking, willing to forego the convenient shortcut of copying answers from one
another or sources on the Internet—and most of all, see calculus as an opportunity to learn
mathematical argumentation, not just as “math skills” to enhance their future employment de-
sirability.

Koshy, Thomas, Triangular Arrays with Applications, Oxford University Press, 2011; xvi +
421 pp, $125. ISBN 978-0-19-974294-3.

This book develops much machinery in number theory and binomial coefficients, including tri-
angular and tetrahedral numbers, before exhibiting a panoply of triangular arrays, beginning
with Pascal’s triangle in Chapter 6. Other arrays include Fibonacci and Lucas numbers; Josef’s,
Leibniz’s, Stirling’s, Bell’s, Euler’s, Lah’s, and tribinomial triangles; and much more. A reader
needs to have a background in calculus and discrete mathematics; the fruits of working through
the book include a broad encounter with related divisibility theory but mainly with combina-
torics, including Catalan numbers, Stirling numbers, and Eulerian numbers. There are numerous
proofs and examples but no exercises.

http://aimath.org/E8/
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